分析 an+1=3an2,a1=3,两边取对数可得:lgan+1=lg3+2lgan,化为lgan+1+lg3=2(lgan+lg3),利用等比数列的通项公式即可得出.
解答 解:∵an+1=3an2,a1=3,
∴?n∈N*,an>0.
∴lgan+1=lg3+2lgan,
化为lgan+1+lg3=2(lgan+lg3),
∴数列{lgan+lg3}是等比数列,首项为2lg3,公比为2.
∴lgan+lg3=2n-1×2lg3=2nlg3,
∴an=${3}^{{2}^{n}-1}$.
点评 本题考查了等比数列的通项公式、对数的运算性质、递推关系的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l∥β,则α∥β | B. | 若α⊥β,l∥α,则l⊥β | C. | 若α⊥β,l⊥α,则l⊥β | D. | 若l⊥α,l⊥β,则α∥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com