科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知函数(),.
(Ⅰ)当时,解关于的不等式:;
(Ⅱ)当时,记,过点是否存在函数图象的切线?若存在,有多少条?若不存在,说明理由;
(Ⅲ)若是使恒成立的最小值,对任意,
试比较与的大小(常数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知函数.
(1)若为的极值点,求实数的值;
(2)若在上为增函数,求实数的取值范围;
(3)当时,方程有实根,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知函数.
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足的任意实数恒成立,求实数的取值范围(这里是自然对数的底数);
(Ⅲ)求证:对任意正数、、、,恒有
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)设函数。
(1)若在处取得极值,求的值;
(2)若在定义域内为增函数,求的取值范围;
(3)设,当时,
求证:① 在其定义域内恒成立;
求证:② 。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题15分)已知函数图象的对称中心为,且的极小值为.
(1)求的解析式;
(2)设,若有三个零点,求实数的取值范围;
(3)是否存在实数,当时,使函数
在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com