精英家教网 > 高中数学 > 题目详情

已知函数 (为实常数)。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

(Ⅰ)时递增;在时递减。
(Ⅱ)(Ⅲ)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.     (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品.
(Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?  
(Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数
(Ⅰ)求的值;
(Ⅱ)若曲线过原点的切线与函数的图像有两个交点,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时,x2+lnx<x3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=+6x的图象关于y轴对称.
(1)求m、n的值及函数y=f(x)的单调区间;(6分)
(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求在点处的切线方程;
(2)若存在,使成立,求的取值范围;
(3)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为
(Ⅰ)求的值;(Ⅱ)求函数的单调递增区间.
(Ⅲ)求函数上的最大值和最小值

查看答案和解析>>

同步练习册答案