精英家教网 > 高中数学 > 题目详情

已知函数
(1)求在点处的切线方程;
(2)若存在,使成立,求的取值范围;
(3)当时,恒成立,求的取值范围.

解(1)
处的切线方程为
                                         
(2)

时,时,
上减,在上增.
时,的最大值在区间端点处取到.


 上最大值为
的取值范围是,                                
(3)由已知得时,恒成立,

由(2)知当且仅当时等号成立,
,从而当
时,为增函数,又
于是当时,时符合题意.              
可得从而当时,

故当时,为减函数,又
于是当时,
不符合题意.综上可得的取值范围为                   

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 (为实常数)。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题15分)已知函数图象的对称中心为,且的极小值为.
(1)求的解析式;
(2)设,若有三个零点,求实数的取值范围;
(3)是否存在实数,当时,使函数
在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
⑴若,求曲线在点处的切线方程;
⑵若在区间上,恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为奇函数,且处取得极大值2.
(1)求函数的解析式;
(2)记,求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)若上存在单调递增区间,求的取值范围;
(2)当时,上的最小值为,求在该区间上
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,已知曲线与曲线交于点.直线与曲线分别相交于点.
(Ⅰ)写出四边形的面的函数关系
(Ⅱ)讨论的单调性,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12分)已知函数,曲线在点M处的切线恰好与直线垂直
(1)求实数的值
(2)若函数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数f(x)=x3-ax2+(a2-1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[-2,4]上的最大值.

查看答案和解析>>

同步练习册答案