精英家教网 > 高中数学 > 题目详情
(文科)设A、B分别是直线y=
2
5
5
x
y=-
2
5
5
x
上的两个动点,并且|
AB
|=
20
,满足
OP
=
OA
+
OB
.(1)求动点P的轨迹C的方程;
(2)若点D的坐标为(0,16),M、N是曲线C上的两个动点,且
DM
DN
(λ≠1),求实数λ的取值范围.
分析:(1)设动点P(x,y),再由题意设出A、B的坐标,根据
OP
=
OA
+
OB
列出坐标之间的关系,再由|
AB
|=
20
和向量模的公式,列出关于x和y的关系式,化简后得到所求的轨迹方程;
(2)设N(s,t),M(x,y),由
DM
DN
和D的坐标列出方程组,用s和t来表示x和y,再代入曲线方程消去s,求出t有关λ的表达式,再由|t|≤4求出λ的不等式.
解答:解:(1)设P(x,y),
由题可令A(x1
2
5
5
x1)
B(x2,-
2
5
5
x2)

OP
=
OA
+
OB

x=x1+x2
y=
2
5
5
(x1-x2).
x1+x2=x
x1-x2=
5
2
y.

又∵|
AB
|=
20

(x1-x2)2+
4
5
(x1+x2)2=20
,即有
5
4
y2+
4
5
x2=20

∴轨迹C的方程为
x2
25
+
y2
16
=1

(2)设N(s,t),M(x,y),
则由
DM
DN
可得,(x,y-16)=λ(s,t-16),故x=λs,y=16+λ(t-16),
∵N、M在曲线C上,
s2
25
+
t2
16
=1
λ2s2
25
+
(λt-16λ+16)2
16
=1

消去s得,
λ2(16-t2)
16
+
(λt-16λ+16)2
16
=1

∵λ≠0且λ≠1,
t=
17λ-15

又∵|t|≤4,
|
17λ-15
|≤4
,解得
3
5
≤λ≤
5
3
(λ≠1)
故实数λ的取值范围为
3
5
≤λ≤
5
3
(λ≠1).
点评:本题主要考查了求轨迹方程和椭圆性质的综合应用.解题的前提是要求学生对基础知识有相当熟练的把握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面内两定点F1(0,-
5
)、F2(0,
5
)
,动点P满足条件:|
PF1
|-|
PF2
|=4
,设点P的轨迹是曲线E,O为坐标原点.
(I)求曲线E的方程;
(II)若直线y=k(x+1)与曲线E相交于两不同点Q、R,求
OQ
OR
的取值范围;
(III)(文科做)设A、B两点分别在直线y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,记xA、xB分别为A、B两点的横坐标,求|xA•xB|的最小值.
(理科做)设A、B两点分别在直线y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区一模)右面是某次测验成绩统计表中的部分数据.
学校 文科均分 理科均分
学校A 101.4 103.2
学校B 101.5 103.4
某甲说:B校文理平均分都比A校高,全体学生的平均分肯定比A校的高.
某乙说:两个学校文理的平均分不一样,全体学生的平均分可以相等.
某丙说:A校全体学生的均分可以比B校的高.
你同意他们的观点吗?我不同意
的观点,请举例
设x、y分别为A、B两校文科学生所占比例,满足y≥
18
19
x+
2
19
,即可以推翻甲的结论.比如:x=0.1,y=0.2,则两校全体学生均分相等.
设x、y分别为A、B两校文科学生所占比例,满足y≥
18
19
x+
2
19
,即可以推翻甲的结论.比如:x=0.1,y=0.2,则两校全体学生均分相等.

查看答案和解析>>

科目:高中数学 来源:浙江省临海市白云中学2009—2010学年度高二下学期第一次月考数学试题 题型:解答题

(理科10分)在△中,所对的边分别为,满足成等差数列,,求点的轨迹方程.
(文科10分)设0<a,b,c<1,求证:(1-a)b,(1-b)c,(1-c)a不同时大于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内两定点数学公式,动点P满足条件:数学公式,设点P的轨迹是曲线E,O为坐标原点.
(I)求曲线E的方程;
(II)若直线y=k(x+1)与曲线E相交于两不同点Q、R,求数学公式的取值范围;
(III)(文科做)设A、B两点分别在直线y=±2x上,若数学公式,记xA、xB分别为A、B两点的横坐标,求|xA•xB|的最小值.
(理科做)设A、B两点分别在直线y=±2x上,若数学公式,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面内两定点F1(0,-
5
)、F2(0,
5
)
,动点P满足条件:|
PF1
|-|
PF2
|=4
,设点P的轨迹是曲线E,O为坐标原点.
(I)求曲线E的方程;
(II)若直线y=k(x+1)与曲线E相交于两不同点Q、R,求
OQ
OR
的取值范围;
(III)(文科做)设A、B两点分别在直线y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,记xA、xB分别为A、B两点的横坐标,求|xA•xB|的最小值.
(理科做)设A、B两点分别在直线y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面积的最大值.

查看答案和解析>>

同步练习册答案