【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线
:
经过伸缩变换
后得到曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求出曲线
、
的参数方程;
(Ⅱ)若
、
分别是曲线
、
上的动点,求
的最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点
为圆心,椭圆
的长轴为直径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知过点
的动直线与椭圆
的两个交点为
,求
的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
![]()
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于
的不等式
,其中
.
(1)当
时,求不等式的解集A;
(2)若
,试求不等式的解集B;
(3)设原不等式的解集为C,记
(其中
为整数集),试探究集合M能否为有限集?若能,求出使得集合M中元素个数最少的实数
的所有取值,并用列举法表示集合M;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
![]()
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
为抛物线
外一点,过点
作抛物线
的两条切线
,
,切点分别为
,
.
![]()
(Ⅰ)若点
为
,求直线
的方程;
(Ⅱ)若点
为圆
上的点,记两切线
,
的斜率分别为
,
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com