如图:三棱柱
中,
,
,侧棱
底面
,
为
的中点,
为
边上的动点。![]()
(1)若
为
中点,求证:
平面![]()
(2)若
,求四棱锥
的体积。
科目:高中数学 来源: 题型:解答题
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD丄CD,AB//CD,AB=AD=
CD=2,点M在线段EC上.![]()
(I)当点M为EC中点时,求证:
面
;
(II)求证:平面BDE丄平面BEC;
(III)若平面说BDM与平面ABF所成二面角锐角,且该二面角的余弦值为
时,求三棱锥M-BDE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4
.![]()
(Ⅰ)设M是PC上一点,证明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中点,求棱锥P-DMB的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一个几何体的三视图如图所示。(1)求此几何体的表面积;(2)如果点
在正视图中所示位置:
为所在线段中点,
为顶点,求在几何体表面上,从
点到
点的最短路径的长。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.![]()
(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明结论;
(3)若AB=2,求三棱锥B﹣CED的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是侧面全等的四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(Ⅰ)求该安全标识墩的体积;
(Ⅱ)证明:直线BD
平面PEG.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com