精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,a2+a5=18,a3•a4=32,且an+1<an(n∈N*)
(1)求数列{an}的通项公式;
(2)若Tn=lga1+lga2+…+lgan,求Tn的最大值及此时n的值.
(1)由于{an}为等比数列,且an+1<an
∴a2a5=a3a4=32,∴
a2+a5=18
a2a5=32
,∴
a2=16
a5=2

q3=
a 5
a 2
=
1
8
,q=
1
2
,则an=a2qn-2=26-n.…(7分)
(2)Tn=lga1+lga2+…+lgan=lg(a1a2…an)=lg25+4+…+(6-n)=
11-n
2
•nlg2=
1
2
(-n2+11n)lg2

二次函数y=-n2+11n 的对称轴为 n=5.5,又n∈z,
故当n=5或n=6时,Tn最大,最大值为T5=T6 =15 lg2.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案