精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P—ABC中,G、H分别为PB、PC的中点,且△ABC为等腰直角三角形,∠B=90°.
⑴求证:GH∥平面ABC;
⑵求异面直线GH与AB所成的角.
⑴证明:  
(2)∵GH∥BC∴GH与AB所成的角为90°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,平面,底面为矩形,.
(Ⅰ)当时,求证:
(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,的中点,是线段上的动点,且
(1)若,求证:
(2) 求二面角的余弦值;
(3) 若直线与平面所成角的大小为,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,若点(异于点)是棱上一点,则满足所成的角为的点的个数为
                                                   
A.0B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a,b,c是空间三条直线,是空间两个平面,则下列命题中,逆命题不成立的是(   )
A.当c⊥时,若c⊥,则
B.当时,若b⊥,则
C.当,且c是a在内的射影时,若b⊥c,则a⊥b
D.当,且时,若c∥,则b∥c

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为三条不同的直线,为两个不同的平面,下列命题中正确的是( )
A.若
B.若
C.若
D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在多面体中,平面,且是边长为2的等边三角形,与平面所成角的正弦值为.
(Ⅰ)在线段上存在一点F,使得,试确定F的位置;
(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知直三棱柱中,,点上.

(1)若中点,求证:∥平面;
(2)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)证明直线和平面垂直的判定定理,即已知:如图1, 求证:
(2)请用直线和平面垂直的判定定理证明:如果一条直线垂直于两个平行平面中的一个,那么它也垂直于另一个平面,即
已知:如图2, 求证:

查看答案和解析>>

同步练习册答案