精英家教网 > 高中数学 > 题目详情
2.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,将△ABD折起到△PBD的位置,若三棱锥P-BCD的外接球的体积为$\frac{7\sqrt{7}π}{6}$,则二面角P-BD-C的正弦值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{7}}{3}$

分析 取BD中点E,连接AE,CE,则∠PEC是二面角P-BD-C的平面角,由此能求出二面角P-BD-C的正弦值.

解答 解:取BD中点E,连接AE,CE,则∠PEC是二面角P-BD-C的平面角,
PE=CE=$\frac{3}{2}$,
三棱锥P-BCD的外接球的半径为R,则$\frac{4}{3}×π×{R}^{3}=\frac{7\sqrt{7}π}{6}$,
解得R=$\frac{\sqrt{7}}{2}$,
设△BCD的外接圆的圆心F与球心O的距离为OF=h,
则CF=$\frac{2}{3}CE$=1,
则R2=1+h2,即$\frac{7}{4}=1+{h}^{2}$,解得h=$\frac{\sqrt{3}}{2}$,
过P作PG⊥平面BCD,交CE延长线于G,过O作OH∥CG,交PG于H,
则四边形HGFO是矩形,且HG=OF=h=$\frac{\sqrt{3}}{2}$,PO=R=$\frac{\sqrt{7}}{2}$,
∴$\left\{\begin{array}{l}{E{G}^{2}+(\frac{\sqrt{3}}{2}+PH)^{2}=(\frac{3}{2})^{2}}\\{(\frac{1}{2}+EG)^{2}+P{H}^{2}=(\frac{\sqrt{7}}{2})^{2}}\end{array}\right.$,
解得GE=$\frac{3}{4}$,PH=$\frac{\sqrt{3}}{4}$,∴PG=$\frac{3\sqrt{3}}{4}$,CG=$\frac{9}{4}$,
∴PC=$\sqrt{\frac{27}{16}+\frac{81}{16}}$=$\frac{3\sqrt{3}}{2}$,
∴cos∠PEC=$\frac{\frac{9}{4}+\frac{9}{4}-\frac{27}{4}}{2×\frac{3}{4}×\frac{3}{4}}$=-$\frac{1}{2}$,
∴sin∠PEC=$\sqrt{1-(-\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$.
∴二面角P-BD-C的正弦值为$\frac{\sqrt{3}}{2}$.
故选:C.

点评 本题考查二面角的正弦值的求法,是中档题,解题时要认真审题,考查学生的计算能力,确定三棱锥P-BCD的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.平面上A、B、C三点不共线,O是不同于A、B、C的任意一点,若($\overrightarrow{OB}$+$\overrightarrow{OC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=0,则△ABC的形状是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=8,DC=4,则AE=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,且PA=AD,则PC与平面ABCD所成角的正切值$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,a1,a4031是函数f(x)=$\frac{1}{3}{x^3}$-4x2+6x-1的极值点,则log2a2016的值是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB是圆O的直径,弦BD,CA的延长线相交于点E,过E作BA的延长线的垂线,垂足为F.求证:AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将点的极坐标(π,-2π)化为直角坐标为(  )
A.(π,0)B.(π,2π)C.(-π,0)D.(-2π,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x+4$\sqrt{x}$-1,则函数的定义域是[0,+∞);函数的值域是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足:$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,则z=2x+y的最小值是(  )
A.0B.-1C.-3D.3

查看答案和解析>>

同步练习册答案