精英家教网 > 高中数学 > 题目详情
12.若实数x,y满足:$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,则z=2x+y的最小值是(  )
A.0B.-1C.-3D.3

分析 本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最小值.

解答 解:画出$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,可行域,得在直线x-y+2=0与直线x+y=0的交点A(-1,1)处,
目标函数z=2x+y的最小值为-1.
故选:B.

点评 本题考查不等式组所表示的平面区域和简单的线性规划问题.在线性规划问题中目标函数取得最值的点一定是区域的顶点和边界,在边界上的值也等于在这个边界上的顶点的值,故在解答选择题或者填空题时,只要能把区域的顶点求出,直接把顶点坐标代入进行检验即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在菱形ABCD中,A=60°,AB=$\sqrt{3}$,将△ABD折起到△PBD的位置,若三棱锥P-BCD的外接球的体积为$\frac{7\sqrt{7}π}{6}$,则二面角P-BD-C的正弦值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=(2-a)lnx+$\frac{2}{x}$+ax.
(1)当a=0时,求函数f(x)的极值;
(2)当a<0时,试求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=f(x)的导函数y=f′(x)的图象如图所示,则原函数y=f(x)的极大值点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是首项为1,公差不为0的等差数列,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Sn是数列{bn}的前n项和,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知过点A(0,1)且斜率为k的直线l与圆C:(x-3)2+(y-4)2=1交于M,N点.
(1)求k的取值范围;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=24,其中O为坐标原点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,在x=0处的切线与直线3x+y=0平行.
(1)求f(x)的解析式;
(2)已知点A(2,m),求过点A的曲线y=f(x)的切线条数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直角坐标方程y2-3x2-4x-1=0等价的极坐标方程是(  )
A.ρ=1+ρcosθB.ρ=1+cosθC.ρ=1+2ρcos θD.ρ=1+2cos θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设偶函数f(x)满足f(x)=-x3+6(x≥0),则{x|f(x-2)>-2}=(  )
A.(-2,4)B.(0,4)C.(0,6)D.(-2,2)

查看答案和解析>>

同步练习册答案