【题目】已知圆的圆心的坐标为,且圆与直线:相切,过点的动直线与圆相交于,两点,直线与直线的交点为.
(1)求圆的标准方程;
(2)求的最小值;
(3)问:是否是定值?若是,求出这个定值;若不是,请说明理由.
【答案】(1) . (2) ; (3) 是定值,定值为-10.
【解析】
(1)根据圆与直线:相切,即圆心到直线的距离等于半径,求出半径,即可写出圆;
(2)根据知当为最大值时,有最小值;
(3)设中点为,,再设直线,联立方程组,计算即可得出。
解:(1)∵圆与直线:相切,圆心为,
∴半径,
∴圆的方程为.
(2)∵,其中是圆心到直线的距离,
∴最大时,最小.
∵当是弦中点时,最大,且,
∴的最小值为.
(3)设中点为,则即,∴,
且,
∴.
当与轴垂直时,方程为,代入圆方程得,
∴中点的坐标为,直线与直线的交点坐标为,
∴.∵,∴,
∴;
当与轴不垂直时,设方程为,
由,得,
∴,
∴,
∴,
∴是定值,定值为-10.
科目:高中数学 来源: 题型:
【题目】下表是我省某地区2012年至2018年农村居民家庭年纯收入(单位:万元)的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年纯收入 | 2 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2012年至2018年该地区农村居民家庭年纯收入的变化情况,并预测该地区2019年农村居民家庭年纯收入(结果精确到0.1)。
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的参数方程为:(为参数).
(1)求曲线,的直角坐标方程;
(2)设曲线,交于点,,已知点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,.
(1)求证:平面平面;
(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥A-BCDE中,平面BCDE,底面BCDE为直角梯形,、,,F为AC上一点,且.
(1)求证:平面ADE;
(2)求异面直线AB、DE所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(Ⅰ)若在上的最大值为,求实数b的值;
(Ⅱ)若对任意x∈[1,e],都有恒成立,求实数a的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当a=1时,求函数的单调区间;
(2)若在上恒成立,求实数a的取值范围;
(3)是否存在实数a,使函数的最小值是3?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数在处的切线方程为,函数.
(1)求函数的解析式;
(2)求函数的极值;
(3)设(表示,中的最小值),若在上恰有三个零点,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com