精英家教网 > 高中数学 > 题目详情
2.若函数y=x3+x2+mx+1在(-∞,+∞)上是单调函数,则实数a的取值范围[$\frac{1}{3}$,+∞).

分析 求函数的导数,利用函数单调性和导数之间的关系进行求解即可.

解答 解:函数的导数f′(x)=3x2+2x+m,
则f′(x)是开口向上的抛物线,
要使f(x)是单调函数,则函数f(x)只能是单调递增函数,
此时满足f′(x)≥0恒成立,
即f′(x)=3x2+2x+m≥0恒成立,
则判别式△=4-12m≤0,
即m≥$\frac{1}{3}$,
故答案为:[$\frac{1}{3}$,+∞)

点评 本题主要考查函数单调性的判断,求函数的导数,利用函数单调性和导数的关系转化为不等式恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.长方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为$\frac{5\sqrt{3}}{9}$,且四边形ABB1A1为正方形,则球O的直径为4或$\sqrt{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=6x-x6,x∈R.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,求曲线在点P处的切线方程;
(Ⅲ)若方程f(x)=a(a为实数)有两个实数根x1,x2且x1<x2,求证:x2-x1≤6${\;}^{\frac{1}{5}}$-$\frac{a}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(1)求证:BN丄平面C1B1N;
(2)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求$\frac{BP}{PC}$的值.
(3)求点A到平面CB1N的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过(4,0)点,且与双曲线x2-y2=2有相同的焦点.
(1)求椭圆E的标准方程;
(2)设点M(m,0)在椭圆E的长轴上,点P是椭圆上任意一点,当|$\overrightarrow{MP}}$|最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知x,y∈(0,+∞),且2x+3y=1,求证:$\frac{1}{x}$+$\frac{1}{y}$≥5+2$\sqrt{6}$;
(2)已知a,b,c均为正数,求证:$\frac{a}{bc}$+$\frac{b}{ca}$+$\frac{c}{ab}$≥$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\vec a$=(2,-1,3),$\vec b$=(-4,2,x),$\vec c$=(1,-x,2),若($\vec a$+$\vec b$)⊥$\vec c$,则实数x的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右前三个小组的频率分别为 0.1,0.3,0.4,第一小组的频数为 5.
(1)求第四小组的频率;
(2)若次数在 75 次以上(含75 次)为达标,试估计该年级学生跳绳测试的达标率.
(3)在这次测试中,一分钟跳绳次数的中位数落在哪个小组内?试求出中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给出下列命题:
(1)若$|\overrightarrow a|=|\overrightarrow b|$,则$\overrightarrow a=\overrightarrow b$;   
(2)向量不可以比较大小;
(3)若$\overrightarrow a=\overrightarrow b,\overrightarrow b=\overrightarrow c$,则$\overrightarrow a=\overrightarrow c$; 
(4)$\overrightarrow a=\overrightarrow b?|\overrightarrow a|=|\overrightarrow b|,\overrightarrow a∥\overrightarrow b$
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案