精英家教网 > 高中数学 > 题目详情

【题目】设圆x2+y2=2的切线l与轴的正半轴、轴的正半轴分别交于点A、B,当|AB|取最小值时,切线l的方程为

【答案】x+y﹣2=0
【解析】解:设A(a,0),B(0,b),a>0,b>0,则切线的方程为 ,|AB|=

又圆x2+y2=2的圆心坐标为(0,0),半径r=

由圆心到直线的距离d= =r= ,可得 + =

则|AB|2=(a2+b2)2[ + ]=2(1+ + +1)≥2(2+2)=8,

当且仅当a=b=2时,等号成立.

故当|AB|取最小值时,切线l的方程为 ,即 x+y﹣2=0,

故答案为:x+y﹣2=0.

根据圆的切线与x轴,y轴交点分别为A和B,设出两点的坐标,进而得出切线的截距式方程,且根据勾股定理表示出|AB|,由直线与圆相切,得到圆心到直线的距离等于圆的半径,利用点到直线的距离公式表示出圆心到所设切线的距离d,使d等于圆的半径r,化简可得a与b的关系式,利用此关系式把|AB|2进行变形,利用基本不等式求出|AB|2的最小值,且得到取最小值时a与b的值,把此时a与b的值代入所设的方程中,即可确定出切线的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点 且圆心在直线.

(1)求圆的方程;

(2)过点的直线与圆交于两点,问在直线上是否存在定点使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= ,f(x)=g(x)﹣ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若抛物线y2=2px(p>0)上一点到焦点和抛物线对称轴的距离分别为10和6,则抛物线方程为(
A.y2=4x
B.y2=36x
C.y2=4x或y2=36x
D.y2=8x或y2=32x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: 表1:男生表2:女生

等级

优秀

合格

尚待改进

等级

优秀

合格

尚待改进

频数

15

x

5

频数

15

3

y


(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

男生

女生

总计

优秀

非优秀

总计

参考数据与公式:
K2= ,其中n=a+b+c+d.
临界值表:

P(K2>k0

0.05

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则下列说法正确的(
A.a∈(2,4),输出的i的值为5
B.a∈(4,5),输出的i的值为5
C.a∈(3,4),输出的i的值为5
D.a∈(2,4),输出的i的值为5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆心在直线上的圆经过点,但不经过坐标原点,并且直线与圆相交所得的弦长为4.

(1)求圆的一般方程;

(2)若从点发出的光线经过轴反射,反射光线刚好通过圆的圆心,求反射光线所在的直线方程(用一般式表达).

查看答案和解析>>

同步练习册答案