精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=ex-a(x+1)(e是自然对数的底数,e=2.71828…).
(1)若f'(0)=0,求实数a的值,并求函数f(x)的单调区间;
(2)设g(x)=f(x)+$\frac{a}{e^x}$,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,恒有g(x2)-g(x1)>m(x2-x1)成立,求实数m的取值范围.

分析 (1)求出函数f(x)的导数,根据f'(0)=0,求出a的值,从而求出函数的单调区间即可;
(2)得到g(x2)-mx2>g(x1)-mx1,令函数F(x)=g(x)-mx,则F(x)在R上单调递增,根据函数的单调性求出m的范围即可.

解答 解:(1)∵f(x)=ex-a(x+1),
∴f′(x)=ex-a,
∵f′(0)=1-a=0,∴a=1,∴f′(x)=ex-1,
由f′(x)=ex-1>0,得x>0;由由f′(x)=ex-1<0,得x<0,
∴函数f(x)的单调增区间为(0,+∞),单调减区间为(-∞,0). 
(2)由$\frac{{g({x_2})-g({x_1})}}{{{x_2}-{x_1}}}$>m,(x1<x2)变形得:g(x2)-mx2>g(x1)-mx1
令函数F(x)=g(x)-mx,则F(x)在R上单调递增,
∴F′(x)=g′(x)-m≥0,即m≤g′(x)在R上恒成立,
$g'(x)={e^x}-a-\frac{a}{e^x}≥2\sqrt{{e^x}•(-\frac{a}{e^x})}-a=-a+2\sqrt{-a}={(\sqrt{-a}+1)^2}-1≥3$,
故m≤3.
∴实数m的取值范围是(-∞,3].

点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知圆O:x2+y2=r2(r>0)与直线3x-4y+20=0相切,则r=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,定点F(1,0),P是定直线l:x=-1上一动点,过点P作l的垂线与线段PF的垂直平分线相交于点Q,记Q点的轨迹为曲线T,过点E(2,0)作斜率分别为k1,k2的两条直线AB,CD交曲线T于点A,B,C,D,且M,N分别是AB,CD的中点.
(1)求曲线T的方程;
(2)若k1+k2=1,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-k-x,(x∈R).
(1)当k=0时,若函数f(x)≥m在R上恒成立,求实数m的取值范围;
(2)试判断当k>1时,函数f(x)在(k,2k)内是否存在两点;若存在,求零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC三边a,b,c上的高分别为$\frac{1}{2},\frac{{\sqrt{2}}}{2},1$,则cosA=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列运算中,正确的是(  )
A.x3•x2=x5B.x+x2=x3C.2x3÷x2=xD.($\frac{x}{2}$)3=$\frac{{x}^{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC的三个内角A,B,C的对边分别是a,b,c,$\frac{cosA-2cosC}{cosB}=\frac{2c-a}{b}$.
(1)若C=A+$\frac{π}{3}$,求角A的大小;
(2)若cosB=$\frac{1}{4}$,△ABC的周长为5,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$,(n≥2)
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求:前n项和公式Sn
(3)证明:当n≥2时,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设F1,F2分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点,M是椭圆C上一点,且直线MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为$\frac{3}{4}$,求C的离心率;
(2)若直线MN在y轴上的截距为2,且MN=5F1N,求椭圆C的方程.

查看答案和解析>>

同步练习册答案