精英家教网 > 高中数学 > 题目详情
定义在R上的函数满足:,且对于任意的,都有,则不等式的解集为           .
(0,2)

试题分析:设g(x)=f(x)-x,∵f′(x)<,∴g′(x)=f′(x)-<0,∴g(x)为减函数,又f(1)=1,∴f(log2x)>,即g(log2x)=f(log2x)-log2x>=g(1)=f(1)-=g(log22),∴log2x<log22,又y=log2x为底数是2的增函数,∴0<x<2,则不等式的解集为(0,2).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为元/本(9≤≤11),预计一年的销售量为万本.
(1)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润最大,并求出的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的导数为,若函数的图象关于直线对称,且函数处取得极值.
(I)求实数的值;
(II)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若,求的极大值;
(Ⅱ)若在定义域内单调递减,求满足此条件的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x2-ln x的单调递减区间为 (  ).
A.(-1,1]B.(0,1]
C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上是增函数,则实数的取值范围是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在(0, 1)上不是单调函数,则实数的取值范围为   _____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数上单调递增,那么实数的取值范围是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案