精英家教网 > 高中数学 > 题目详情

已知几何体由正方体和直三棱柱组成,其三视图和直观图(单位:cm)如图所示.设两条异面直线所成的角为,求的值.

解析试题分析:几何体由正方体和直三棱柱组成,求两条异面直线所成的角. 由三视图和直观图可得线段的数量,异面直线所成的角转化为.在通过解三角形即求得的余弦值,及为所求的结论.
试题解析:由,且,可知
为异面直线所成的角(或其补角).
由题设知
中点,则,且

由余弦定理,得

考点:异面直线所成的角.2.解三角形的知识.3.空间想象力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面平面于点,且, 
(1)求证:
(2)
(3)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为正方形,
平面,已知为线段的中点.
(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在体积为的正三棱锥中,长为为棱的中点,求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)正三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形为正方形,四边形为等腰梯形,.

(1)求证:平面
(2)求四面体的体积;
(3)线段上是否存在点,使平面?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如右图,在底面为平行四边形的四棱柱中,底面,
,,

(1)求证:平面平面
(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCDABAA1.

(1)证明:平面A1BD∥平面CD1B1
(2)求三棱柱ABDA1B1D1的体积.

查看答案和解析>>

同步练习册答案