精英家教网 > 高中数学 > 题目详情

如右图,在底面为平行四边形的四棱柱中,底面,
,,

(1)求证:平面平面
(2)若,求四棱锥的体积.

(1)详见解析(2)1

解析试题分析:(1)由平面,可证中,勾股定理可得,由线面垂直的判定定理可证⊥平面,再由平面与平面垂直的判定定理可证平面
(2)利用(1)中⊥平面,取的中点,根据已知得,四棱锥的体积为=.
试题解析:
解:(1)证明:在中,由余弦定理得:
所以,所以,即
又四边形为平行四边形,所以
底面,底面,所以
,所以平面,
平面,所以平面平面.            6分
(2)连结



平面
所以
所以四边形
面积,    8分
的中点,连结,则
,又平面平面,平面平面
所以平面,所以四棱锥的体积:
.              12分
考点:1.面面垂直的判定定理;2.椎体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知几何体由正方体和直三棱柱组成,其三视图和直观图(单位:cm)如图所示.设两条异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在三棱柱ABC-A1B1C1中,AB⊥AC,顶点A1在底面ABC上的射影恰为点B,且AB=AC=A1B=2.
 
(1)证明:平面A1AC⊥平面AB1B;
(2)若点P为B1C1的中点,求三棱锥P-ABC与四棱锥P-AA1B1B的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求证:平面
(3)设,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.

(1)当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为4的菱形ABCD中,∠DAB=60°.点EF分别在边CDCB上,点E与点CD不重合,EFACEFACO.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.

(1)求证:BD⊥平面POA
(2)记三棱锥PABD的体积为V1,四棱锥PBDEF的体积为V2,求当PB取得最小值时V1V2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在边长为5+的长方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.

查看答案和解析>>

同步练习册答案