精英家教网 > 高中数学 > 题目详情
1.求证:
(1)C${\;}_{n+1}^{1}$+2C${\;}_{n+1}^{2}$+3C${\;}_{n+1}^{3}$+…+(n+1)C${\;}_{n+1}^{n+1}$=(n+1)•2n
(2)2<(1+$\frac{1}{n}$)n<3(n≥2,n∈N*).

分析 (1)利用倒序相加法,即可证明结论;
(2)(1+$\frac{1}{n}$)n=Cn0+Cn1×$\frac{1}{n}$+Cn2($\frac{1}{n}$)2+…+Cnn($\frac{1}{n}$)n=1+1+Cn2×$\frac{1}{{n}^{2}}$+Cn3×$\frac{1}{{n}^{3}}$+…+Cnn×$\frac{1}{{n}^{n}}$,利用放缩法证明结论.

解答 证明:(1)S=C${\;}_{n+1}^{1}$+2C${\;}_{n+1}^{2}$+3C${\;}_{n+1}^{3}$+…+(n+1)C${\;}_{n+1}^{n+1}$,
∴S=(n+1)${C}_{n+1}^{n+1}$+n${C}_{n+1}^{n}$+(n-1)${C}_{n+1}^{n-1}$+…+C${\;}_{n+1}^{1}$,
∴2S=(n+1)•2n+1
∴S=n+1)•2n
(2)(1+$\frac{1}{n}$)n=Cn0+Cn1×$\frac{1}{n}$+Cn2($\frac{1}{n}$)2+…+Cnn($\frac{1}{n}$)n
=1+1+Cn2×$\frac{1}{{n}^{2}}$+Cn3×$\frac{1}{{n}^{3}}$+…+Cnn×$\frac{1}{{n}^{n}}$
=2+$\frac{1}{2!}$×$\frac{n(n-1)}{{n}^{2}}$+$\frac{1}{3!}$×$\frac{n(n-1)(n-2)}{{n}^{3}}$+…+$\frac{1}{n!}$×$\frac{n(n-1)•…•2•1}{{n}^{n}}$
<2+$\frac{1}{2!}$+$\frac{1}{3!}$+…+$\frac{1}{n!}$<2+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$
=2+$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n-1}]}{1-\frac{1}{2}}$=3-($\frac{1}{2}$)n-1<3.
显然(1+$\frac{1}{n}$)n=1+1+Cn2×$\frac{1}{{n}^{2}}$+Cn3×$\frac{1}{{n}^{3}}$+…+Cnn×$\frac{1}{{n}^{n}}$>2.
∴2<(1+$\frac{1}{n}$)n<3(n≥2,n∈N*).

点评 本题考查不等式的性质和应用,解题时要注意二项式定理和放缩法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.曲线y=|x2-1|与y=1-|x|围成的封闭图形的面积是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)在R上为奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x,则f(7)=(  )
A.-2B.2C.98D.-98

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求等差数列数列6,9,12,…,300的项数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.指出下列函数的间断点,并说明是第几类间断点,是可去间断点的,设法使其变成连续函数:
(1)f(x)=$\frac{1}{{x}^{2}-1}$;
(2)f(x)=$\frac{{x}^{2}-1}{{x}^{2}-3x+2}$;
(3)f(x)=$\left\{\begin{array}{l}{x-1,x≤1}\\{2-x,x>1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的数列{an}的前n项和为{Sn}.满足a2n+1=2Sn+n+4,a2-1,a3,a7恰为等比数列{bn}的前3项.
(1)求数列{an},{bn}的通项公式;
(2)若Cn=(-1)nlog2bn-$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x,y∈R+,且x2+$\frac{1}{4}$y2=1,则x$\sqrt{1+{y}^{2}}$的最大值是$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用区间表示不等式组$\left\{\begin{array}{l}{x-1>0}\\{x+2<0}\end{array}\right.$的解集为∅.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.用符号“∈”或“∉”填空.
3∈N,0∉∅,$\frac{1}{3}$∉Z,3∈{1,3,5}.

查看答案和解析>>

同步练习册答案