19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$ £¨tΪ²ÎÊý£©£¬ÓÖÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC¼«×ø±ê·½³ÌΪ£º¦Ñ2-4¦Ñsin¦È=4£¬Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£®
£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³Ì¼°ÇúÏßCµÄÆ½ÃæÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇóÏß¶ÎABµÄ³¤£®

·ÖÎö £¨1£©ÓÉ$\left\{\begin{array}{l}{x=-2+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$ £¨tΪ²ÎÊý£© ÏûÈ¥t£¬µÃ£ºÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÓÖ½«¦Ñ2=x2+y2£¬¦Ñsin¦È=y´úÈë¦Ñ2-4¦Ñsin¦È=4¿ÉµÃÇúÏßCµÄÆ½ÃæÖ±½Ç×ø±ê·½³Ì£®
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëx2+£¨y-2£©2=8µÃ£ºt2-2t-4=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{x=-2+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$ £¨tΪ²ÎÊý£© ÏûÈ¥t£¬µÃ£ºÖ±ÏßlµÄÆÕͨ·½³ÌΪ$\sqrt{3}x-y+2\sqrt{3}+2=0$£¬
ÓÖ½«¦Ñ2=x2+y2£¬¦Ñsin¦È=y´úÈë¦Ñ2-4¦Ñsin¦È=4µÃ
ÇúÏßCµÄÆ½ÃæÖ±½Ç×ø±ê·½³ÌΪx2+£¨y-2£©2=8£®
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëx2+£¨y-2£©2=8µÃ£ºt2-2t-4=0£¬
ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôò t1+t2=2£¬t1•t2=-4£¬
¡à$|{AB}|=\left|{\;}\right.{t_1}-{t_2}\left.{\;}\right|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=2\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÕý·½ÌåABCD-A1B1C1D1µÄÀⳤΪa£¬AC1ÓëBD1ÏཻÓÚµãO£¬ÔòÓУ¨¡¡¡¡£©
A£®$\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}={a^2}$B£®$\overrightarrow{AB}•\overrightarrow{A{C_1}}=\sqrt{2}{a^2}$C£®$\overrightarrow{AB}•\overrightarrow{AO}=\frac{{\sqrt{3}}}{2}{a^2}$D£®$\overrightarrow{BC}•\overrightarrow{D{A_1}}={a^2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}£¨x¡Ü0£©}\\{f£¨x-1£©£¨x£¾0£©}\end{array}\right.$£¬Ôòf£¨x£©=xµÄ½âµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôa£¾b£¬c£¾d£¬Ôòac£¾bdB£®Èôac£¾bc£¬Ôòa£¾b
C£®Èôa£¾b£¬Ôò$\frac{1}{a}£¼\frac{1}{b}$D£®Èôa£¾b£¬c£¾d£¬Ôòa+c£¾b+d

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªA£¬B£¬CÊÇÇòÃæÉÏÈýµã£¬ÇÒAB=6£¬BC=8£¬AC=10£¬ÇòÐÄOµ½Æ½ÃæABCµÄ¾àÀëµÈÓÚ¸ÃÇò°ë¾¶µÄ$\frac{1}{2}$£¬Ôò´ËÇòµÄ±íÃæ»ýΪ$\frac{400}{3}$¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª¼¯ºÏA={x|1¡Üx¡Üa}£¬Èô¼¯ºÏAÖÐËùÓÐÕûÊýÔªËØµÄºÍΪ28£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[7£¬8£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×ãan2=4Sn-2an-1£¨n¡ÊN*£©£¬ÆäÖÐSnΪ{an}µÄǰnÏîºÍ£®
£¨1£©Çóa1£¬a2µÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èôº¯Êýf£¨x£©=a£¨x-2e£©•lnx+1ÓÐÁ½¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬0£©¡È£¨$\frac{1}{e}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®º¯Êý$f£¨x£©=\frac{1}{2}£¨{e^x}-{e^{-x}}£©$¾ÍÆæÅ¼ÐÔ¶øÑÔÊÇÆæº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸