精英家教网 > 高中数学 > 题目详情
11.各项均为正数的数列{an}满足an2=4Sn-2an-1(n∈N*),其中Sn为{an}的前n项和.
(1)求a1,a2的值;
(2)求数列{an}的通项公式.

分析 (1)通过n=1,n=2求解数列的a1,a2的值.
(2)利用数列的递推关系式,通过an=Sn-Sn-1,化简推出数列是等差数列,然后求解即可.

解答 解:(1)当n=1时,a12=4S1-2a1-1,
即(a1-1)2=0,解得a1=1.
当n=2时,a22=4S2-2a2-1=4a1+2a2-1=3+2a2
解得a2=3或a2=-1(舍去).
(2)an2═4Sn-2an-1,①
an+12=4Sn+1-2an+1-1.②
②-①得:an+12-an2=4an+1-2an+1+2an=2(an+1+an),
即(an+1-an)(an+1+an)=2(an+1+an).
∵数列{an}各项均为正数,
∴an+1+an>0,an+1-an=2,
∴数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.

点评 本题考查数列的递推关系式的应用,通项公式的求法,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在△ABC中,∠C=90°,AC=BC,D,E分别是AC,AB的中点,现将△ABC沿DE折成直二面角A′-DE-B,连接A′B,A′C,F是A′B的中点.
(1)求证:EF∥平面A′CD;
(2)求证:EF⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列{an}的前n项和为Sn,若an=$\frac{1}{n(n+1)}$,则S10等于(  )
A.1B.$\frac{10}{11}$C.$\frac{1}{11}$D.$\frac{1}{110}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t为参数),又以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C极坐标方程为:ρ2-4ρsinθ=4,直线l与曲线C交于A,B两点.
(1)求直线l的普通方程及曲线C的平面直角坐标方程;
(2)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)是定义在(0,+∞)上的减函数,对任意a,b∈(0,+∞)都有f(a+b)=f(a)+f(b)-1,且f(4)=5.
(1)求f(2)的值;
(2)求关于m的不等式f(m-2)≤3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.小明有5道课后作业题,他只会做前两道,若他从中任选2道题做,则选出的都是不会做的题的概率为(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\left\{\begin{array}{l}cos\frac{π}{2}x,x≤0\\{log_4}(x+1),x>0\end{array}\right.$的图象中存在关于原点对称的点的组数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的中心在原点,焦点在x轴上,离心率为e=$\frac{\sqrt{6}}{3}$,右焦点到右顶点的距离为$\sqrt{3}$-$\sqrt{2}$
(1)求椭圆C的标准方程;
(2)设F1,F2为椭圆的左,右焦点,过F2作直线交椭圆C于P,Q两点,求△PQF1的内切圆半径r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=$\frac{9^x}{{{9^x}+3}}$,若S=f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+…+f($\frac{2014}{2015}$),则S=(  )
A.1005B.1006C.1007D.1008

查看答案和解析>>

同步练习册答案