精英家教网 > 高中数学 > 题目详情

用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?

240种


解析:

按排列中相邻问题处理.(1)(4)或(2)(4). 可以涂相同的颜色.分类:若(1)(4)同色,有A种,若(2)(4)同色,有A种,若(1)(2)(3)(4)均不同色,有A种. 由加法原理,共有N=2A+A=240种.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一种颜色,相邻部分涂不同颜色,则涂色的方法共有
240
 种.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有(  )

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海交大附中高三数学理总复习二排列、组合、二项式定理练习卷(解析版) 题型:填空题

如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.

 

 

查看答案和解析>>

科目:高中数学 来源:2013届山西大学附中高二第二学期期中考试理科数学试卷(解析版) 题型:填空题

用五种不同的颜色,给右图中的(1)(2)(3)(4)的

各部分涂色,每部分涂一种颜色,相邻部分涂不同颜色,((2)(4)不相邻)则涂色的方法共有_______ 种。

 

查看答案和解析>>

科目:高中数学 来源:2012届福建省福州八县(市)协作校高二下学期期末联考数学(理) 题型:填空题

如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,

相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同

的涂色方法共有     种。

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案