精英家教网 > 高中数学 > 题目详情
用数学归纳法证明:32n+2-8n-9(n∈N*)能被64整除.

证明:(1)当n=1时,34-8×1-9=64,能被64整除,命题成立.

(2)假设当n=k时,命题成立,即32k+2-8k-9能被64整除,

则当n=k+1时,3-8(k+1)-9=9(32k+2-8k-9)+64k+64.

因为32k+2-8k-9能被64整除,所以3-8(k+1)-9能被64整除.

即当n=k+1时,命题也成立.

由(1)(2)可知,对任何n∈N*,命题都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、用数学归纳法证明“5n-2n能被3整除”的第二步中,n=k+1时,为了使用归纳假设,应将5k+1-2k+1变形为
5(5k-2k)+3×2k

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)3
时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是
(k+1)2+k2
(k+1)2+k2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),则当n=k+1时,左边的式子是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:n∈N*,(n+1)(n+2)…(n+n)=2n•1•3•(2n-1),从k到k+1时左边需增代数式等于
2(2k+1)
2(2k+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{An}:A1,A2,A3,…,An,若不改变A1,仅改变A2,A3,…,An中部分项的符号,得到的新数列{an}称为数列{An}的一个生成数列.如仅改变数列1,2,3,4,5的第二、三项的符号可以得到一个生成数列1,-2,-3,4,5.已知数列{an}为数列{
1
2n
}(n∈N*)
的生成数列,Sn为数列{an}的前n项和.
(1)写出S3的所有可能值;
(2)若生成数列{an}的通项公式为an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn
(3)用数学归纳法证明:对于给定的n∈N*,Sn的所有可能值组成的集合为:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

同步练习册答案