精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1
3
ax3+bx2+cx(a<b<c)
,其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.
(1)求证:0≤
b
a
<1

(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围.
分析:(1)求导函数f′(x)=ax2+2bx+c,依题意有f′(1)=a+2b+c=0,f'(m)=am2+2bm+c=-a,结合a<b<c,即可得-
1
3
b
a
<1
,将c=-a-2b代入f′(m)=am2+2bm+c=-a得am2+2bm-2b=0,即方程ax2+2bx-2b=0有实根,故其判别式△=4b2+8ab≥0,从而可得
b
a
≤-2
b
a
≥ 0
,故问题得证;
(2)由于f'(x)=ax2+2bx+c的判别式△′=4b2-4ac>0,所以方程a2+2bx+c=0有两个不相等的实数根,设为x1,x2
由于f′(1)=a+2b+c=0知1是(*)的一个根,记x1=1,利用根与系数的关系,可知函数f(x)的单调递增区间为[x2,1],从而[x2,1]=[s,t],进而可得|s-t|=|1-x2|=2+
2b
a
,利用0≤
b
a
<1
,可求|s-t|的范围.
解答:(1)证明:因为f′(x)=ax2+2bx+c…(1分)
于是依题意有f′(1)=a+2b+c=0,①…(1分)
f′(m)=am2+2bm+c=-a,②…(1分)
又由a<b<c,可得4a<a+2b+c<4c,即4a<0<4c,所以a<0,c>0,
由①得c=-a-2b,
∵a<b<c,a<0
-
1
3
b
a
<1
③…(2分)
将c=-a-2b代入②得am2+2bm-2b=0,即方程ax2+2bx-2b=0有实根,故其判别式△=4b2+8ab≥0,
由此可得(
b
a
)2+2(
b
a
)≥0

解得
b
a
≤-2
b
a
≥ 0
④…(2分)
由③、④即可得0≤
b
a
<1
;  …(1分)
(2)解:由于f′(x)=ax2+2bx+c的判别式△′=4b2-4ac>0,…(1分)
所以方程a2+2bx+c=0(*)有两个不相等的实数根,设为x1,x2
又由f′(1)=a+2b+c=0知1是(*)的一个根,记x1=1,…(1分)
则由根与系数的关系得1+x2=-
2b
a
,即x2=-1-
2b
a
<0<x1

当x<x2或x>1时,f'(x)>0;当x2<x<1时,f'(x)>0,…(1分)
所以函数f(x)的单调递增区间为[x2,1]
由题设[x2,1]=[s,t],…(1分)
因此|s-t|=|1-x2|=2+
2b
a

由(1)知0≤
b
a
<1
,所以|s-t|∈[2,4).…(1分)
点评:本题考查的重点是导数知识的运用,考查不等式的证明,考查函数的单调性,同时考查了根与系数关系的运用,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河南模拟)设函数f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)当a=1时,过原点的直线与函数f(x)的图象相切于点P,求点P的坐标;
(Ⅱ)当0<a<
1
2
时,求函数f(x)的单调区间;
(Ⅲ)当a=
1
3
时,设函数g(x)=x2-2bx-
5
12
,若对于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求实数b的取值范围.(e是自然对数的底,e<
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•株洲模拟)设x0是函数f(x)=(
1
3
)x-log2x
的零点.若0<a<x0,则f(a)的值满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
3
)
x
-8(x≤0)
x
     (x>0)
,若f(a)>1,则实数a的取值范围为
a>1或a<-2
a>1或a<-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
(a-1)x3-
1
2
ax2+x
(a∈R)[
(Ⅰ)若y=f(x)在点(1,f(1))处的切线与y轴和直线x-2y=0围成的三角形面积等于
1
4
,求a的值;
(II)当a<2时,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
3
)
x
-8(x<0)
x
(x≥0)
,若f(a)>1,则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案