精英家教网 > 高中数学 > 题目详情
(2012•许昌三模)选修4-4:坐标系与参数方程
在直角坐标系xoy中,直线l的参数方程为
x=a+4t
y=-1-2t
(t为参数)在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合)中,圆C的方程为ρ=2
2
cos(θ+
π
4
).
(Ⅰ)求圆心C到直线l的距离;
(Ⅱ)若直线l被圆C截得的弦长为
6
5
5
,求a的值.
分析:(I)先将圆的极坐标方程化成直角坐标系下的方程,再将直线的参数方程化成直角坐标系下的方程,然后利用点到直线的距离求解即得;
(Ⅱ)由题意知圆心C到直线l的距离,再根据圆心距和半径构成的直角三角列出关于弦长的方程,解方程即可.
解答:解:(Ⅰ)圆C的方程整理可得:ρ2=2ρ(cosθ-sinθ)
化为标准方程得:(x-1)2+(y+1)2=2.圆心为(1,-1),半径为
2

直线l一般方程为:x+2y+2-a=0,故圆心C到l的距离d=
|1-a|
5
=
5
5
|1-a|
.----(5分)
(Ⅱ)由题意知圆心C到直线l的距离d=
2
2
-(
3
5
5
)2
=
5
5

由(Ⅰ)知
5
5
=
5
5
|1-a|
,得a=0或a=2.----(10分)
点评:本题主要考查了直线的参数方程、圆的极坐标方程,以及直线和圆的位置关系的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌三模)已知数列{an}中,a1=a2=1,且an+2-an=1,则数列{an}的前100项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)已知A,B是圆x2+y2=2上两动点,O是坐标原点,且∠AOB=120°,以A,B为切点的圆的两条切线交于点P,则点P的轨迹方程为
x2+y2=8
x2+y2=8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)如图,在RT△ABC中,D是斜边AB上一点,且AC=AD,记∠BCD=β,∠ABC=α.
(Ⅰ)求sinα-cos2β的值;
(Ⅱ)若BC=
3
CD,求∠CAB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)如图,在四面体ABCD中,二面角A-CD-B的平面角为60°,AC⊥CD,BD⊥CD,且AC=CD=2BD,点E、F分别是AD、BC的中点.
(Ⅰ)求作平面α,使EF?α,且AC∥平面α,BD∥平面α;
(Ⅱ)求证:EF⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)已知函数f(x)=ex,若函数g(x)满足f(x)≥g(x)恒成立,则称g(x)为函数f(x)的下界函数.
(Ⅰ)若函数g(x)-kx是f(x)的下界函数,求实数k的取值范围;
(Ⅱ)证明:对于?m≤2,,函数h(x)=m+lnx都是f(x)的下界函数.

查看答案和解析>>

同步练习册答案