精英家教网 > 高中数学 > 题目详情

(满分10分)(Ⅰ) 设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,求证为定值并求出此定值;
(Ⅱ)设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,利用(Ⅰ)的结论直接写出的值。(不必写出推理过程)

(Ⅰ)见解析;(Ⅱ)

解析试题分析:(Ⅰ)
         …………………………4分
在椭圆上有………………6分
所以       …………………………8分
(Ⅱ)         ……………………10分
考点:本题主要考查椭圆的标准方程及其几何性质,直线斜率的坐标表示。
点评:本题较易,(I)利用直线斜率的坐标表示,结合点在椭圆上,证明了为定值,(II)则通过类比推理,得出结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆)的一个顶点为,离心率为,直线与椭圆交于不同的两点.(1) 求椭圆的方程;(2) 当的面积为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且.

(1)建立适当的坐标系,求椭圆方程;
(2)如果椭圆上两点使直线轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分) 设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2,)在椭圆上,。
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆相似,且椭圆的一个短轴端点是抛物线的焦点.
(Ⅰ)试求椭圆的标准方程;
(Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线与椭圆交于两点,且与椭圆交于两点.若线段与线段的中点重合,试判断椭圆与椭圆是否为相似椭圆?并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知双曲线C与椭圆有相同的焦点,实半轴长为.
(Ⅰ)求双曲线的方程;
(Ⅱ)若直线与双曲线有两个不同的交点,且
(其中为原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的焦点坐标为,且短轴一顶点B满足
(Ⅰ) 求椭圆的方程;
(Ⅱ)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知双曲线与椭圆有相同焦点,且经过点
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
给定抛物线是抛物线的焦点,过点的直线相交于两点,为坐标原点.
(Ⅰ)设的斜率为1,求以为直径的圆的方程;
(Ⅱ)设,求直线的方程.

查看答案和解析>>

同步练习册答案