(满分10分)(Ⅰ) 设椭圆方程
的左、右顶点分别为
,点M是椭圆上异于
的任意一点,设直线
的斜率分别为
,求证
为定值并求出此定值;
(Ⅱ)设椭圆方程
的左、右顶点分别为
,点M是椭圆上异于
的任意一点,设直线
的斜率分别为
,利用(Ⅰ)的结论直接写出
的值。(不必写出推理过程)
科目:高中数学 来源: 题型:解答题
如图,已知
是长轴为
的椭圆上三点,点
是长轴的一个顶点,
过椭圆中心
,且
.![]()
(1)建立适当的坐标系,求椭圆方程;
(2)如果椭圆上两点
使直线
与
轴围成底边在
轴上的等腰三角形,是否总存在实数
使
?请给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分) 设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2,
)在椭圆上,。
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且
,求△OAB的面积的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆
与椭圆
相似,且椭圆
的一个短轴端点是抛物线
的焦点.
(Ⅰ)试求椭圆
的标准方程;
(Ⅱ)设椭圆
的中心在原点,对称轴在坐标轴上,直线
与椭圆
交于
两点,且与椭圆
交于
两点.若线段
与线段
的中点重合,试判断椭圆
与椭圆
是否为相似椭圆?并证明你的判断.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知双曲线C与椭圆
有相同的焦点,实半轴长为
.
(Ⅰ)求双曲线
的方程;
(Ⅱ)若直线
与双曲线
有两个不同的交点
和
,且![]()
(其中
为原点),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的焦点坐标为
,
,且短轴一顶点B满足
,
(Ⅰ) 求椭圆的方程;
(Ⅱ)过
的直线l与椭圆交于不同的两点M、N,则△
MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)
给定抛物线
,
是抛物线
的焦点,过点
的直线
与
相交于
、
两点,
为坐标原点.
(Ⅰ)设
的斜率为1,求以
为直径的圆的方程;
(Ⅱ)设
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com