精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知椭圆的焦点坐标为,且短轴一顶点B满足
(Ⅰ) 求椭圆的方程;
(Ⅱ)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由。

(Ⅰ)=1;(Ⅱ)直线l:x=1,△AMN内切圆面积的最大值为π。

解析试题分析:(Ⅰ)由题,设椭圆方程为=1(a>b>0),不妨设B(0,b),

故椭圆方程为=1;
(Ⅱ) 设M,N,不妨设>0, <0,设△MN的内切圆半径为R,
则△MN的周长=4a=8,(MN+M+N)R=4R因此最大,R就最大,

由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,
+6my-9=0,
==
令t=,则t≥1,则,
令f(t)=3t+,则f′(t) =3-,当t≥1时,f′(t)≥0,f(t)在[1,+∞)上单调递增,
故有f(t)≥f(1)="4," =3,
即当t=1,m=0时,="3," =4R,∴=
这时所求内切圆面积的最大值为π.
故直线l:x=1,△AMN内切圆面积的最大值为π。
考点:椭圆的简单性质;直线与椭圆的综合应用。
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆:的一个顶点为,离心率为.直线与椭圆交于不同的两点M,N.
(Ⅰ)求椭圆的方程;
(Ⅱ)当△AMN得面积为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆M的中心为坐标原点 ,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分10分)(Ⅰ) 设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,求证为定值并求出此定值;
(Ⅱ)设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,利用(Ⅰ)的结论直接写出的值。(不必写出推理过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
求焦点为(-5,0)和(5,0),且一条渐近线为的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行于AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。

(Ⅰ)求椭圆的离心率;
(Ⅱ)若平行四边形OCED的面积为, 求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离为5,求抛物线的方程和m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知双曲线的离心率为,且过点P().
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A,B,且  
(其中O为原点),求k的取值范围.

查看答案和解析>>

同步练习册答案