如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且.
(1)建立适当的坐标系,求椭圆方程;
(2)如果椭圆上两点使直线与轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.
(1)(2) 存在实数使证明:设直线的方程为,所以直线的方程为由椭圆方程与直线的方程联立,消去得
,所以同理
又,所以,所以,即存在实数使成立
解析试题分析:(1)以为原点,所在的直线为轴建立如图所示的直角坐标系,则,椭圆方程可设为
而为椭圆中心,由对称性知
又,所以
又,所以
所以为等腰直角三角形,所以点的坐标为
将 代入椭圆方程得 则椭圆方程为
(2)由直线与轴围成底边在轴上的等腰三角形,设直线的斜率为,
则直线的斜率为,直线的方程为,
直线的方程为
由椭圆方程与直线的方程联立,消去得
①
因为在椭圆上,所以是方程①的一个根,于是
同理
这样,
又,所以
即.所以,即存在实数使.
考点:求椭圆方程及直线与椭圆相交韦达定理的应用
点评:本题对于高二文科学生有一定的难度,可区分出优秀学生与一般学生
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
已知椭圆的离心率为,一条准线.
(1)求椭圆的方程;
(2)设O为坐标原点,是上的点,为椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于两点.
①若,求圆的方程;
②若是l上的动点,求证:点在定圆上,并求该定圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
过抛物线焦点垂直于对称轴的弦叫做抛物线的通径。如图,已知抛物线,过其焦点F的直线交抛物线于、 两点。过、作准线的垂线,垂足分别为、.
(1)求出抛物线的通径,证明和都是定值,并求出这个定值;
(2)证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
动圆经过定点,且与直线相切。
(1)求圆心的轨迹方程;
(2)直线过定点与曲线交于、两点:
①若,求直线的方程;
②若点始终在以为直径的圆内,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程.
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆M的中心为坐标原点 ,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分10分)(Ⅰ) 设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,求证为定值并求出此定值;
(Ⅱ)设椭圆方程的左、右顶点分别为,点M是椭圆上异于的任意一点,设直线的斜率分别为,利用(Ⅰ)的结论直接写出的值。(不必写出推理过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com