精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow a=(x,-1)$,$\overrightarrow b=(1,\sqrt{3})$,若$\overrightarrow a⊥\overrightarrow b$,则$|\overrightarrow a|$=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.4

分析 根据题意,由$\overrightarrow a⊥\overrightarrow b$,则有$\overrightarrow{a}$•$\overrightarrow{b}$=x-$\sqrt{3}$=0,解可得x的值,即可得向量$\overrightarrow{a}$的坐标,由向量模的计算公式计算可得答案.

解答 解:根据题意,向量$\overrightarrow a=(x,-1)$,$\overrightarrow b=(1,\sqrt{3})$,
若$\overrightarrow a⊥\overrightarrow b$,则有$\overrightarrow{a}$•$\overrightarrow{b}$=x-$\sqrt{3}$=0,
解可得x=$\sqrt{3}$,
则$\overrightarrow{a}$=($\sqrt{3}$,-1),故$|\overrightarrow a|$=$\sqrt{3+1}$=2;
故选:C.

点评 本题考查向量的坐标运算,关键是掌握向量垂直与向量的数量积之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤4}\end{array}\right.$则z=2x+3y的最大值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{BA}$=(1,$\sqrt{3}$),$\overrightarrow{BC}$=(2,0),
(1)求∠BAC的大小
(2)求向量$\overrightarrow{BA}$在向量AC方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=5,$cosB=\frac{3}{5}$.则△ABC的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.使函数f(x)=$\root{3}{{x}^{2}(1-{x}^{2})}$满足罗尔定理条件的区间是(  )
A.[0,1]B.[-1,1]C.[-2,2]D.[-$\frac{3}{5}$,$\frac{4}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=(x2-3)ex,设关于x的方程${f^2}(x)-mf(x)-\frac{12}{e^2}=0(m∈R)$有n个不同的实数解,则n的所有可能的值为(  )
A.3B.1或3C.4或6D.3或4或6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左顶点为A,右焦点为F(1,0),过点A且斜率为1的直线交椭圆E于另一点B,交y轴于点C,$\overrightarrow{AB}=6\overrightarrow{BC}$.
(1)求椭圆E的方程;
(2)过点F作直线l与椭圆E交于M,N两点,连接MO(O为坐标原点)并延长交椭圆E于点Q,求△MNQ面积的最大值及取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.sin$\frac{3π}{4}$=(  )
A.-$\frac{\sqrt{2}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.模长为1的复数x,y,z满足x+y+z≠0,则$|{\frac{xy+yz+zx}{x+y+z}}|$的值是1.

查看答案和解析>>

同步练习册答案