精英家教网 > 高中数学 > 题目详情

已知数学公式,又数列{an}(an>0)中,a1=2,且其前n项和Sn(n∈N)对所有大于1的自然数n都有Sn=f(Sn-1),求通项公式an,并写出推导过程.

解:∵
=x+2+2,
∵Sn=f(Sn-1)Sn=Sn-1+2+2an-2
=2
8Sn-1=(an-2)2
=an2-4an+4
8Sn=8Sn-1+8an=an2+4an+4=((an+2)2
8Sn-1=(an-1+2)2
∴(an-2)2=(an-1+2)2
因为an>0,
所以an-2=an-1+2an-an-1=4,
即公差为4的等差数列,
∴an=4n-2.
分析:由f(x)=x+2+2,Sn=f(Sn-1)Sn=Sn-1+2+2an-2=2,知8Sn=8Sn-1+8an=an2+4an+4=((an+2)2,8Sn-1=(an-1+2)2.由此能推导出an=4n-2.
点评:本题考查数列与函数的综合应用.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=(
x
+
2
2(x≥0),又数列{an}(an>0)中,a1=2,这个数列的前n项和的公式Sn(n∈N*)对所有大于1的自然数n都有Sn=f(Sn-1).
(1)求数列{an}的通项公式;
(2)若bn=
an+12+an2
2an+1an
(n∈N*),求证
lim
n→∞
(b1+b2+…+bn-n)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1
,对任意x,y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又数列{an}满足a1=
1
2
an+1=
2a
1+
a
2
n

(I)在(-1,1)内求一个实数t,使得f(t)=2f(
1
2
)

(II)求证:数列{f(an)}是等比数列,并求f(an)的表达式;
(III)设cn=
n
2
bn+2,bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)
,是否存在m∈N*,使得对任意n∈N*cn
6
7
lo
g
2
2
m-
18
7
log2m
恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an},前三项之积为512,且这三项分别减去1,3,9后又成等差数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于无穷数列{xn}和函数f(x),若xn+1=f(xn)(n∈N+),则称f(x)是数列{xn}的母函数.
(Ⅰ)定义在R上的函数g(x)满足:对任意α,β∈R,都有g(αβ)=αg(β)+βg(α),且g(
1
2
)=1
;又数列{an}满足:an=g(
1
2n
)

求证:(1)f(x)=x+2是数列{2nan}的母函数;
(2)求数列{an}的前项n和Sn
(Ⅱ)已知f(x)=
2012x+2
x+2013
是数列{bn}的母函数,且b1=2.若数列{
bn-1
bn+2
}
的前n项和为Tn,求证:25(1-0.99n)<Tn<250(1-0.999n)(n≥2)

查看答案和解析>>

同步练习册答案