精英家教网 > 高中数学 > 题目详情

【题目】设△ABC的内角A、B、C的对边分别为a、b、c,且满足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)试判断△ABC的形状,并说明理由;
(2)若a+b+c=1+ ,试求△ABC面积的最大值.

【答案】
(1)解:∵sinA+sinB=[cosA﹣cos(π﹣B)]sinC,

∴sinA+sinB=(cosA+cosB)sinC,

由正弦定理和余弦定理得,

a+b=( + )c,

化简得,2a2b+2ab2=ab2+ac2﹣a3+ba2+bc2﹣b3

a2b+ab2=ac2﹣a3+bc2﹣b3

(a+b)(a2+b2﹣c2)=0,

又a+b>0,∴a2+b2﹣c2=0,即a2+b2=c2

∴△ABC为直角三角形,且∠C=90°


(2)解:∵a+b+c=1+ ,a2+b2=c2

∴1+ =a+b+ ≥2 + =(2+

当且仅当a=b时上式等号成立,则 =

∴SABC= ab≤ × =

即△ABC面积的最大值为


【解析】(1)由诱导公式、正弦定理和余弦定理化简已知的式子,化简后由边的关系判断出三角形的形状;(2)由(1)和条件化简后,由基本不等式化简求出 的范围,表示三角形的面积,即可求出答案.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点是曲线上的一个动点,求它到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线E: =1(a>0,b>0)的左、右焦点分别为F1、F2 , P是E坐支上一点,且|PF1|=|F1F2|,直线PF2与圆x2+y2=a2相切,则E的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 两个变量的相关关系一定是线性相关

B. 两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于0

C. 在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加1个单位

D. 对分类变量,随机变量的观测值越大,则判断“有关系”的把握程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品在天内每件的销售价格(元)与时间)(天)的函数关系满足函数,该商品在天内日销售量(件)与时间)(天)之间满足一次函数关系如下表:

(1)根据表中提供的数据,确定日销售量与时间的一次函数关系式;

(2)求该商品的日销售金额的最大值并指出日销售金额最大的一天是天中的第几天,(日销售金额每件的销售价格日销售量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)上的点到右焦点F的最小距离是 ﹣1,F到上顶点的距离为 ,点C(m,0)是线段OF上的一个动点.
(1)求椭圆的方程;
(2)是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得( + )⊥ ,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=sin(2x﹣ )的图象向左平移 个单位后,所得函数图象的一条对称轴为(
A.x=0
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装批发市场1-5月份的服装销售量与利润的统计数据如下表:

月份

1

2

3

4

5

销售量 (万件)

3

6

4

7

8

利润 (万元)

19

34

26

41

46

1)从这五个月的利润中任选2分别记为 求事件 均不小于30”的概率

2)已知销售量与利润大致满足线性相关关系,请根据前4个月的数据,求出关于的线性回归方程

3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆C: + =1(a>b>0)的焦距为2,直线y=x被椭圆C截得的弦长为

(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(x0 , y0)是椭圆C上的动点,过原点O引两条射线l1 , l2与圆M:(x﹣x02+(y﹣y02= 分别相切,且l1 , l2的斜率k1 , k2存在.
①试问k1k2是否定值?若是,求出该定值,若不是,说明理由;
②若射线l1 , l2与椭圆C分别交于点A,B,求|OA||OB|的最大值.

查看答案和解析>>

同步练习册答案