精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0.
(Ⅰ)求圆C的圆心坐标和圆C的半径;
(Ⅱ)求证:直线l过定点;
(Ⅲ)判断直线l被圆C截得的弦何时最长,何时最短?并求截得的弦长最短时m的值,以及最短长度.
分析:(I)将圆的方程化为标准方程,可得圆C的圆心坐标和圆C的半径;
(Ⅱ)分离参数可得(2x+y-7)m+(x+y-4)=0,再建立方程组,可得结论;
(Ⅲ)直线l被圆C截得的弦最长时,圆心(1,2)在直线l上,圆C截得的弦为直径;当圆心C(1,2)与A(3,1)的连线与l垂直时,直线l被圆C截得的弦最短,由此可得结论.
解答:(I)解:圆C:x2+y2-2x-4y-20=0,可变为:(x-1)2+(y-2)2=52
由此可知圆C的圆心C坐标为(1,2),半径为5.
(Ⅱ)证明:由直线l:(2m+1)x+(m+1)y-7m-4=0,可得(2x+y-7)m+(x+y-4)=0
对于任意实数m,要使上式成立,必须
2x+y-7=0
x+y-4=0.

解得:
x=3
y=1.
…(6分)
所以直线l过定点A(3,1).
(Ⅲ)解:直线l被圆C截得的弦最长时,圆心(1,2)在直线l上,圆C截得的弦为直径;当圆心C(1,2)与A(3,1)的连线与l垂直时,直线l被圆C截得的弦最短
此时(-
1
2
)×(-
2m+1
m+1
)=-1
,∴m=-
3
4

∵CA=
5
,圆的半径为5,
∴直线l被圆C截得的弦最短弦长为2
25-5
=4
5
点评:本题考查圆的方程,考查直线恒过定点,考查直线与圆的位置关系,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案