精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,满足2cos2
A
2
=
3
sin A;(1)求角A的大小;(2)求sinB+sinC的取值范围.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)已知等式右边利用二倍角的正弦函数公式化简,整理求出tan
A
2
的值,即可确定出A的度数;
(2)由A的度数得到B+C的度数,用B表示出C,代入sinB+sinC中,利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域确定出范围即可.
解答: 解:(1)∵2cos2
A
2
=
3
sinA=2
3
sin
A
2
cos
A
2
,且cos
A
2
≠0,
∴cos
A
2
=
3
sin
A
2
,即tan
A
2
=
3
3

A
2
=
π
6
,即A=
π
3

(2)∵A=
π
3

∴B+C=
3
,即C=
3
-B,
∴sinB+sinC=sinB+sin(
3
-B)=sinB+
3
2
cosB+
1
2
sinB=
3
2
sinB+
3
2
cosB=
3
3
2
sinB+
1
2
cosB)=
3
sin(B+
π
6
),
∵0<B<
3
,∴
π
6
<B+
π
6
6

3
2
<sin(B+
π
6
)≤1,即
3
2
3
sin(B+
π
6
)≤
3

则sinB+sinC的范围为(
3
2
3
].
点评:此题考查了同角三角基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①函数y=-
2
x
在其定义域上是增函数;        ②函数y=
x2(x-1)
x-1
是偶函数;
③函数y=log2(x-1)的图象可由y=log2(x+1)的图象向右平移2个单位得到;
④若F(x)=
x,x>0
-x,x<0
,f(-1)=0;     ⑤[(-2)2] -
1
2
=-
1
2

则上述五个命题中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=(  )
A、
4
5
B、-
4
5
C、
3
5
D、-
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中an>0,且a1+a2+…+a20=60,则a10•a11的最大值等于(  )
A、3B、6C、9D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆2x2+3y2=6的长轴长是(  )
A、
3
B、
2
C、2
2
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα•cosα=
2
5
,且0<α<
π
4
,则sinα-cosα=(  )
A、
5
5
B、
3
5
5
C、-
5
5
D、-
3
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数.若x≥0时,f(x)=x2-2x.
(Ⅰ)当x<0时,求函数f(x)的解析式;
(Ⅱ)画出f(x)的简图;(要求绘制在答题卷的坐标纸上);
(Ⅲ)结合图象写出f(x)的单调区间(只写结论,不用证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

若a和b是计算机在区间(0,2)上产生的随机数,那么函数f(x)=lg(ax2+4x+4b)的值域为R(实数集)的概率为(  )
A、
1+2ln2
4
B、
3-2ln2
4
C、
1+ln2
2
D、
1-ln2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意的x>1,不等式x+
1
x-1
≥c恒成立,则实数c的取值范围是(  )
A、(-∞,3]
B、[3,+∞)
C、(2,+∞)
D、(-∞,2]

查看答案和解析>>

同步练习册答案