精英家教网 > 高中数学 > 题目详情
若a和b是计算机在区间(0,2)上产生的随机数,那么函数f(x)=lg(ax2+4x+4b)的值域为R(实数集)的概率为(  )
A、
1+2ln2
4
B、
3-2ln2
4
C、
1+ln2
2
D、
1-ln2
2
考点:几何概型
专题:概率与统计
分析:运用函数f(x)=lg(ax2+4x+4b)的值域为R(实数集),求出a,b的范围,再由几何概概型的概率公式,即可得到.
解答: 解:由已知,a和b是计算机在区间(0,2)上产生的随机数,对应区域的面积为4,
因为函数f(x)=lg(ax2+4x+4b)的值域为R(实数集),所以(ax2+4x+4b)能取得所有的正数,所以
a>0
△=16-16ab≥0
,解得ab≤1且a>0,对应的区域面积为
2
1
2
(2-
1
a
)da
=(2a-lna)|
 
2
1
2
=3-2ln2;
由几何概型的公式得
3-2ln2
4

故选B.
点评:本题考查的知识点是几何概型的意义,关键是要找出(0,2)上产生两个随机数a和b所对就图形的面积,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列各组函数表示同一函数的是(  )
A、y=
x2-9
x-3
,y=x+3
B、y=
x2
-1,y=x-1
C、y=x+1,y=t-1
D、y=
3t3
,y=x

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,满足2cos2
A
2
=
3
sin A;(1)求角A的大小;(2)求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0)和B(0,2)在直线y=kx+k-1的同侧,则实数k的取值范围是(  )
A、(-∞,-1)∪(3,+∞)
B、(-∞,-3)∪(1,+∞)
C、(-1,3)
D、(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为(  )
A、700B、669
C、676D、695

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
1
ax
-1)(a>0,a≠1).
(1)求函数f(x)的定义域;
(2)讨论函数f(x)的单调性(不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A=[tan(-
19π
6
,sin(-
19π
6
)];若函数f(x)=
x2+mx+m
的定义域为R,记实数m的取值集合为B,集合C={x|a+1<x<2a},a为实数.
(1)求集合A,B及A∪B.
(2)若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ln(
1
x
-1)的定义域为(  )
A、(0,1)
B、(1,+∞)
C、(-∞,0)∪(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的边长及棱的长度均为2,求:
(1)异面直线AC及A1B1的距离.
(2)点C1到平面A1BC的距离;
(3)三棱锥C1-A1BC的体积.

查看答案和解析>>

同步练习册答案