【题目】函数f(x)的定义域是(0,
),f′(x)是它的导函数,且f(x)+tanxf′(x)>0在定义域内恒成立,则( )
A.f(
)>
f(
)
B.
sin1?f(1)>f(
)
C.f(
)>
f(
)
D.
f(
)>
f(
)
【答案】B
【解析】解:∵x∈(0,
), ∴由f(x)+tanxf′(x)>0,得cosxf(x)+sinxf′(x)>0.
令g(x)=sinxf(x),则g′(x)=cosxf(x)+sinxf′(x)>0.
∴g(x)在(0,
)上为增函数,
∴g(1)>g(
),即sin1f(1)>sin
f(
).
∴sin1f(1)>
f(
).
则
sin1f(1)>f(
).
故选:B.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】对于函数
,如果存在实数
使得
,那么称
为
的线性函数.
(1)下面给出两组函数,判断
是否分别为
的线性函数?并说明理由;
第一组:![]()
第二组::![]()
(2)设
,线性函数为
.若等式
在
上有解,求实数
的取值范围;
(3)设
,取
.线性函数
图像的最低点为
.若对于任意正实数
且
.试问是否存在最大的常数
,使
恒成立?如果存在,求出这个
的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y+1=0垂直,求a的值;
(2)设f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:f(x1)+f(x2)>﹣5.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC﹣A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则
的取值范围是( ) ![]()
A.(1,
)
B.(
,
)
C.(
,
)
D.(
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=
﹣ax﹣b(a、b∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为x+2y+4=0,求a、b的值;
(2)当b=1时,若总存在负实数m,使得当x∈(m,0)时,f(x)<0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2alnx+x2﹣(a+4)x+1(a为常数)
(1)若a>0,讨论f(x)的单调性;
(2)若对任意的 a∈(1,
),都存在 x0∈(3,4]使得不等式f(x0)+ln a+1>m(a﹣a2)+2a ln
成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县共有户籍人口60万人,该县60岁以上、百岁以下的人口占比13.8%,百岁及以上的老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:
年龄段(岁) | [60,70) | [70,80) | [80,90) | [90,99) |
人数(人) | 125 | 75 | 25 | 5 |
(1)从样本中70岁及以上老人中采用分层抽样的方法抽取21人进一步了解他们的生活状况,则80岁及以上老人应抽多少人?
(2)从(1)中所抽取的80岁及以上的老人中,再随机抽取2人,求抽到90岁及以上老人的概率;
(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款. ①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;
②本县户籍80岁及以上老年人额外享受高龄老人生活补贴.
(a)百岁及以上老年人,每人每月发放345元生活补贴;
(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;
(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.
试估计政府执行此项补贴措施的年度预算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥P﹣ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为
(球的体积公式为
R3 , 其中R为球的半径),AB=2,AC=1,∠BAC=60°,则三棱锥P﹣ABC的体积为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为3的正方体ABCD﹣A1B1C1D1中,A1E=CF=1. ![]()
(1)求两条异面直线AC1与D1E所成角的余弦值;
(2)求直线AC1与平面BED1F所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com