精英家教网 > 高中数学 > 题目详情
如图,梯形ABCD中,AB=BC=1,AD=2,∠CBA=∠BAD=90°,沿对角线AC将△ABC折起,使点B在平面ACD内的射影O恰在AC上.
(Ⅰ)求证:AB⊥平面BCD;
(Ⅱ)求异面直线BC与AD所成的角;
(Ⅲ)求二面角B-AD-C的余弦值.

【答案】分析:解法1:(Ⅰ)建立空间直角坐标系,利用向量的方法证明,可得AB⊥CD,再利用AB⊥BC,可得AB⊥平面BCD;
(Ⅱ)求出,利用向量夹角公式,可求异面直线BC与AD所成的角;
(Ⅲ)求出平面ACD的法向量,平面ABD的法向量,利用向量夹角公式,可求二面角B-AD-C的平面角;
解法2:(Ⅰ)利用线面垂直的判定定理证明AB⊥平面BCD;
(Ⅱ)取CD中点E,AB中点F,连OE,OF,EF,则可得∠EOF或其补角为AD,BC所成的角.在△EOF中,利用余弦定理可求异面直线BC与AD所成的角;
(Ⅲ)过O作OG⊥AD于G,连BG,则∠OGB为所求二面角的平面角,在Rt△OGB中可求.
解答:解法1:(Ⅰ)在梯形ABCD中,∵,∴AC2+DC2=AD2,∴AC⊥DC.
又BO⊥平面ACD,AC?平面ACD,∴BO⊥AC,又AB=CB,∴O为AC中点.
以O为坐标原点,以OA,OB所在直线分别为x,z轴,以过O且平行于CD的直线为y轴建立空间直角坐标系.…(3分)

,∴,∴AB⊥CD,
又AB⊥BC,BC∩CD=C,∴AB⊥平面BCD.…(6分)
(Ⅱ)∵,∴
,即异面直线BC与AD所成的角为60°.…(9分)
(Ⅲ)平面ACD的法向量为
设平面ABD的法向量为,则,即,解得
取z=1,∴
设二面角B-AD-C的平面角为θ,则.…(12分)
解法2:(Ⅰ)在梯形ABCD中,∵,∴AC2+DC2=AD2,∴AC⊥DC.
又BO⊥平面ACD,∴AB⊥CD,又AB⊥BC,BC∩CD=C,∴AB⊥平面BCD…(4分)
(Ⅱ)∵BA=BC,BO⊥AC,∴O为AC中点.
取CD中点E,AB中点F,连OE,OF,EF,则OE∥AD,OF∥BC,

∴∠EOF或其补角为AD,BC所成的角.
作FH∥BO交AC于H,连HE,则FH⊥平面ACD,

在△EOF中,∵,∴
∴∠EOF=120°,故异面直线BC与AD所成的角为60°.…(8分)
(Ⅲ)过O作OG⊥AD于G,连BG,则∠OGB为所求二面角的平面角.
Rt△OGB中,,∴.…(12分)
点评:本题考查线面垂直,考查线线角,考查面面角,考查传统方法与向量方法的结合,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,梯形ABCD中,CD∥AB,AD=DC=CB=
12
AB,E是AB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角P-DE-C的大小为120°.
(1)求证:DE⊥PC;
(2)求直线PD与平面BCDE所成角的大小;
(3)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形ABCD中,AD∥BC,PA⊥平面ABCD,E是PD的中点,AB=BC=1,PA=AD=2.
(1)求证:CE∥平面PAB;
(2)求证:CD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形ABCD中,CD∥AB,AD=DC=CB=
12
AB=a
,E是AB的中点,将△ADE沿DE折起,使点A折到点P的位置,且二面角P-DE-C的大小为120°
(1)求证:DE⊥PC;
(2)求点D到平面PBC的距离;
(3)求二面角D-PC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是BC上的动点,当
PD
PA
最小时,tan∠APD的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图直角梯形ABCD中,∠DAB=90°,AD∥BC,E,F是AB边的四等分点,AB=4,BC=BF=AE=1,AD=3,P为在梯形区域内一动点,满足PE+PF=AB,记动点P的轨迹为Γ.
(1)建立适当的平面直角坐标系,求轨迹Γ在该坐标系中的方程;
(2)判断轨迹Γ与线段DC是否有交点,若有交点,求出交点位置;若没有交点,请说明理由;
(3)证明D,E,F,C四点共圆,并求出该圆的方程.

查看答案和解析>>

同步练习册答案