精英家教网 > 高中数学 > 题目详情
有一个所有棱长均为a的正四棱锥P-ABCD,还有一个所有棱长均为a的正三棱锥,将此三棱锥的一个面与正四棱锥的一个侧面完全重合的黏在一起,得到一个如图所示的多面体;
(1)证明:P,E,B,A四点共面;
(2)求三棱锥A-PDE的体积;
(3)在底面ABCD内找一点M,使EM⊥面PBC,指出M的位置,并说明理由.
考点:棱柱、棱锥、棱台的体积,平面的基本性质及推论
专题:空间位置关系与距离
分析:(1)取PB的中点F,连结AF,EF,CF,AC,由已知得∠ACF为二面角P-AB-C的平面角,∠EFC为二面角E-PB-C的平面角,由余弦定理得cos∠AFC=-
1
3
,cos∠EFC=
1
3
,从而∠AFC+∠EFC=π,由此能证明P,E,B,A四点共面.
(2)由已知得AP∥BE,BE∥平面APD,从而VA-PDE=VB-APD=VP-ABD,由此能求出三棱锥A-PDE的体积.
(3)ME⊥平面PBC,交平面PBC于点H,则H为△PBC的重心,由已知得H为△ACE的重心,从而求出M为线段AC的中点.
解答: (1)证明:取PB的中点F,连结AF,EF,CF,AC,
∵棱长均为a的正三棱锥的各面均为正三角形,
∴AF⊥PB,CF⊥PB,且AF=CF=
3
2
a

∴∠ACF为二面角P-AB-C的平面角,∠EFC为二面角E-PB-C的平面角,
在△AFC中,由余弦定理得:cos∠AFC=
AF2+CF2-AC2
2AF•CF
=-
1
3

在△EFC中,由余弦定理得:cos∠EFC=
EF2+CF2-EC2
2EF•CF
=
1
3

∴∠AFC+∠EFC=π,
∴P,E,B,A四点共面.
(2)解:∵P,E,B,A四点共面,∠PAB=60°,∠ABE=120°,
∴AP∥BE,BE∥平面APD,
∴三棱锥A-PDE的体积:
VA-PDE=VB-APD=VP-ABD=
1
3
×
1
2
×a×a×
2
2
a
=
2
12
a3

(3)解:∵ME⊥平面PBC,交平面PBC于点H,
则H为△PBC的重心,
连结AC,在△ACE中,∵
CH
HF
=
1
2
,∴H为△ACE的重心,
∴M为线段AC的中点.
点评:本小题主要考查空间线面关系、二面角的度量、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线y=ln(x-a)与直线ey=x+1相切,则a=(  )
A、1B、eC、-1D、-e

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,AC=AD=4,DE=2AB=6,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)若直线CD与平面ABED所成的角为
π
3
,∠CAD=
π
2
,求三棱锥B-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域关于原点对称,且满足①f(x1-x2)=
f(x1)f(x2)+1
f(x2)-f(x1)
;②存在正常实数a,使f(a)=1.求证:
(1)f(x)是奇函数;
(2)f(x)是周期函数,并且有一个周期为4a.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,M,N分别是四面体OABC的棱OA,BC的中点,点P在MN上且满足
MP
=
2
3
MN
,若
OA
=
a
OB
=
b
OC
=
c
,则与
OP
相等的向量是(  )
A、
1
3
a
+
1
3
b
+
1
6
c
B、
1
3
a
+
1
6
b
+
1
6
c
C、
1
6
a
+
1
6
b
+
1
3
c
D、
1
6
a
+
1
3
b
+
1
3
c

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cosx-sin2x-cos2x+
7
4
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

A、B、C、D四名同学排成一排照相,要求自左向右,A不排第一,B不排第四,则共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

设10件产品中有4件次品,6件正品,求下列事件的概率.
(1)有放回的任取三件至少有2件次品;
(2)从中依次取5件恰有2件次品;
(3)从中任取2件都是次品;
(4)从中任取5件恰有2件次品.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线的极坐标方程为ρcosθ-ρsinθ+2=0,则它与曲线
x=sinα+cosα
y=1+sin2α
(α为参数)的交点的直角坐标是
 

查看答案和解析>>

同步练习册答案