精英家教网 > 高中数学 > 题目详情
(2012•月湖区模拟)已知数列{an}的通项公式是an=-n2+12n-32,其前n项和是Sn,对任意的m,n∈N*且m<n,则Sn-Sm的最大值是(  )
分析:根据数列的通项公式,求得数列的前3项为负值,从第九项开始也全部为负,因此,S7-S4最大.
解答:解:由an=-n2+12n-32=0,得n=4或n=8,即a4=a8=0,
又函数f(n)=-n2+12n-32的图象开口向下,所以数列前3项为负,
当n>8时,数列中的项均为负数,
在m<n的前提下,Sn-Sm的最大值是S7-S4=a5+a6+a7=-52+12×5-32-62+12×6-72+12×7-32=10.
故选D.
点评:本题考查了数列的函数特性,解答的关键是分清在m<n的前提下,什么情况下Sn最大,什么情况下Sn最小,题目同时考查了数学转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•月湖区模拟)已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最大值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别a,b,c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•月湖区模拟)复数
i20112i-1
(i为虚数单位)的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•月湖区模拟)若二项式(a
x
-
1
x
)6
的展开式中的常数项为-160,则
a
1
(
x
-
1
x
)dx
=
4
2
-2
3
-ln2
4
2
-2
3
-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•月湖区模拟)为缓解某路段交通压力,计划将该路段实施“交通银行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:
年龄(岁) [15,25) [25,) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 9 6 4 3
(I)作出被调查人员年龄的频率分布直方图;
(II)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通银行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案