精英家教网 > 高中数学 > 题目详情
已知f(
2
x+1
)=
x
,求f(x).
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:
2
x+1
=t
,并解出x,带入f(
2
x+1
)=
x
即可.
解答: 解:令
2
x+1
=t
,x=
2-t
t

f(t)=
2-t
t
=
-t2+2t
t
,∴f(x)=
-x2+2x
x
点评:考查函数的解析式以及换元法求解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a3=7,a8+a4=26,{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=
1
an2-1
(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

我们将侧棱和底面边统称为棱,则三棱锥有4个面,6条棱,4个顶点,如果面数记作F,棱数记作E,顶点数记作V,那么F,E,V之间有什么关系?再用三棱柱,四棱台检验你得到的关系式,你知道这是个什么公式?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=
3
,|
b
|=2,<
a
b
>=30°,求|
a
+
b
|,|
a
-
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

时维壬辰,序属仲春,值春耕播种时机,某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:
(1)从4月10日至4月14日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于14”的概率;
(2)根据表中的数据可知发芽数y(颗)与温差x(℃)呈线性相关,请求出发芽数y关于温差x的线性回归方程
y
=
b
x+
a

(参考公式:回归直线方程式
y
=
b
x+
a
,其中
b
=
n
i=1
xiyi-
.
x
.
y
n
i=1
x
2
i
-n
.
x2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

一种设备的价值为a元,设备的维修和消耗费用第一年为b元,以后每年增加b元,用t表示设备使用的年数,用y表示设备的年平均费用,则y=设备年平均维修费和消耗费用+设备价值的年折旧.(注:年折旧=设备价值÷使用年数)
(Ⅰ) 写出y关于t的函数关系式;
(Ⅱ) 若a=450000元,b=1000元时,求这种设备的最佳使用年限(使年平均费用最低的t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin
x
4
,cos
x
4
),
n
=(
3
cos
x
4
,cos
x
4
),记f(x)=
m
n

(1)若f(x)=1,求cos(x+
π
4
)的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

三个不同的平面可将空间分成m个部分,则m的值可为
 
.(把所有的m值都写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某50件商品中有15件一等品,其余为二等品,现从中随机选购2件,若X表示所购2件中的一等品的件数,则P(X≤1)=
 
.(用分数作答)

查看答案和解析>>

同步练习册答案