精英家教网 > 高中数学 > 题目详情
5.直线y=$\sqrt{3}$x-2的倾斜角大小为60°.

分析 由于直线的斜率等于$\sqrt{3}$,设倾斜角等于α,则 0°≤α<180°,且tanα=$\sqrt{3}$,由此求得α的值

解答 解:由题意得:直线的斜率是:k=$\sqrt{3}$,
设倾斜角等于α,则 0°≤α<180°,且tanα=$\sqrt{3}$,
∴α=60°,
故答案为 60°.

点评 本题主要考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知角α的终边经过点P(x,-$\sqrt{2}$)(x>0),且cosα=$\frac{\sqrt{3}}{6}$x,求sinα+$\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下列式子:$1+\frac{1}{2^2}<\frac{3}{2},1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3},1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4},…$据其中规律,可以猜想出:$1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+…+\frac{1}{{{{10}^2}}}<$$\frac{19}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+4.
(1)求y=f(x)的表达式;
(2)求直线y=2x+4与y=f(x)所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.复数z=(1+i)m2+(3-10i)m-(4-9i),(其中 i为虚数单位,m∈R),
(1)当m=0时,求复数z的模;    
(2)当实数m为何值时复数z为纯虚数;
(3)当实数m为何值时复数z在复平面内对应的点在第二象限?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,若正四棱锥P-ABCD的底面边长为2,斜高为$\sqrt{5}$,则该正四棱锥的体积为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某商场在一部向下运行的手扶电梯终点的正上方竖直悬挂一幅广告画.如图,该电梯的高AB为4米,它所占水平地面的长AC为8米.该广告画最高点E到地面的距离为10.5米.最低点D到地面的距离6.5米.假设某人的眼睛到脚底的距离MN为1.5米,他竖直站在此电梯上观看DE的视角为θ.
(1)设此人到直线EC的距离为x米,试用x表示点M到地面的距离;
(2)此人到直线EC的距离为多少米,视角θ最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=lnx,g(x)=$\frac{1}{2}$ax2+bx(a≠0),h(x)=f(x)-g(x),f(x)=lnx,g(x)=$\frac{1}{2}$ax2+bx(a≠0),h(x)=f(x)-g(x),
(1)若a=3,b=2,求h(x)的极值点;
(2)若b=2且h(x)存在单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函数F(x)=g(x+1)-f(x)有极值为0,求a的值;
(2)若函数G(x)=f[cos(1-x)]+g(x-1)在区间(1,2)上为增函数,求a的取值范围.

查看答案和解析>>

同步练习册答案