精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函数F(x)=g(x+1)-f(x)有极值为0,求a的值;
(2)若函数G(x)=f[cos(1-x)]+g(x-1)在区间(1,2)上为增函数,求a的取值范围.

分析 (1)求出函数的导数,得到ln$\frac{1}{a}$-1+a=0,令h(x)=x-1-lnx,根据函数的单调性求出h(x)的最小值,求出a的值即可;
(2)问题转化为-asint+$\frac{1}{t}$≥0在t∈(0,1)上恒成立,等价于$\frac{1}{t}$≥asint,根据函数的单调性求出a的范围即可.

解答 解:(1)F(x)=ln(x+1)-ax,F′(x)=$\frac{1}{x+1}$-a,
令F′(x)=0,得x=$\frac{1}{a}$-1,由F(x)的极值为0,
所以F($\frac{1}{a}$-1)=0,所以ln$\frac{1}{a}$-1+a=0,
令h(x)=x-1-lnx,h′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
x∈(0,1)时,h′(x)<0恒成立,当x∈(1,+∞)时,h′(x)>0,
则h(x)在(0,1)上递减,在(1,+∞)上递增,
所以h(x)在x=1时取得最小值,而h(1)=0,
所以a=1,验证a=1时,F(x)有极值为0,所以a=1.
(2)G(x)=a[cos(1-x)]+ln(x-1),G′(x)=-asin(x-1)+$\frac{1}{x-1}$,
由题意知G′(x)≥0在x∈(1,2)上恒成立,令x-1=t,
所以有-asint+$\frac{1}{t}$≥0在t∈(0,1)上恒成立,
等价于$\frac{1}{t}$≥asint,由sint>0,所以当a≤0,符合条件,
当a>0,$\frac{1}{a}$≥tsint,令P(t)=tsint,P′(t)=sint+tcost,
sint>0,tcost>0.则P′(t)≥0恒成立,P(x)的最大值为P(1),
所以0<a≤sin1.
综合以上可知a≤sin1.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.直线y=$\sqrt{3}$x-2的倾斜角大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=2sin2x的最小正周期为(  )
A.B.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知cos(π-α)=$\frac{4}{5}$,且α∈($\frac{π}{2}$,π),求下列各式的值.
(1)tan(α-$\frac{π}{4}$);
(2)$\frac{1}{sin(\frac{π}{2}-2α)}$+tan 2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知某四棱锥的三视图(单位:cm)如图所示,则该几何体的体积是$\frac{8\sqrt{3}}{3}$,其全面积是16+$\sqrt{3}$+$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-(2a+1)x+alnx(a>0),求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,则A的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.复数z=(m2+m-6)+(m2-3m+2)i,其中m∈R,则当m为何值时,
(1)z是实数?
(2)z是纯虚数?
(3)如果复数z在复平面上对应的点位于第二象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,左、右焦点为F1,F2,点M为椭圆C上的任意一点,$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的最小值为2.
(I)求椭圆C的标准方程;
(II)已知椭圆C的左、右顶点为A,B,点D(a,t)为第一象限内的点,过F2作以BD为直径的圆的切线交直线AD于点P,求证:点P在椭圆C上.

查看答案和解析>>

同步练习册答案