分析 求函数的导数,利用函数单调性和导数之间的关系,对a讨论,分①当0<a<1时,②当a=1时,③当a>1时,即可求f(x)的单调区间.
解答 解:∵f(x)=x2-2(a+1)x+2alnx(a>0).
∴f′(x)=2x-2(a+1)+$\frac{2a}{x}$=$\frac{{2x}^{2}-2(a+1)x+2a}{x}$,
由f'(x)=0得x1=a,x2=1,
①当0<a<1时,在x∈(0,a)或x∈(1,+∞)时,f'(x)>0;
在x∈(a,1)时,f'(x)<0.
∴f(x)的单调增区间是(0,a)和(1,+∞),单调减区间是(a,1);
②当a=1时,在x∈(0,+∞)时f'(x)≥0,
∴f(x)的单调增区间是(0,+∞);
③当a>1时,在x∈(0,1)或x∈(a,+∞)时,f'(x)>0;
在x∈(1,a)时,f'(x)<0.
∴f(x)的单调增区间是(0,1)和(a,+∞),单调减区间是(1,a).
点评 本题主要考查函数单调性和导数之间的关系,考查分类讨论的思想方法,正确分类是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 选考物理、化学、生物的科目数 | 1 | 2 | 3 |
| 人数 | 5 | 25 | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com