精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=x3-ax-1(a∈R)
( I)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)在区间(-1,1)上单调递减,求实数a的取值范围.

分析 ( I)求出函数的导数,通过a的讨论,判断导函数的符号,推出函数f(x)的单调性;
(Ⅱ)利用第一问的结果,利用单调性的子集关系推出结果即可.

解答 (本题满分12分)
解:( I)f'(x)=3x2-a---------------------(1分)
若a≤0,f'(x)=3x2-a≥0,f(x)在R上单调递增---------(4分)
若$a>0,f'(x)<0,x∈({-\sqrt{\frac{a}{3}},\sqrt{\frac{a}{3}}}),f'(x)>0,x∈({-∞,-\sqrt{\frac{a}{3}}})∪({\sqrt{\frac{a}{3}},+∞})$
函数f(x)的递减区间为$({-\sqrt{\frac{a}{3}},\sqrt{\frac{a}{3}}})$,递增区间为$({-∞,-\sqrt{\frac{a}{3}}}),({\sqrt{\frac{a}{3}},+∞})$-------(8分)
( II)由(1)知,函数f(x)在区间(-1,1)上单调递减,
$({-1,1})⊆({-\sqrt{\frac{a}{3}},\sqrt{\frac{a}{3}}})∴1≤\sqrt{\frac{a}{3}}∴a≥3$---------------------------------(12分)

点评 本题考查函数的单调性以及的导数的求法,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知z=($\frac{1+i}{1-i}$)8,则$\overline{z}$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解关于x的不等式(ax-1)(x-1)>0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=1$,|$\overrightarrow{b}$|=1,|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|,k>0.
  (1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的最大值;
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$共线,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=2sin2x的最小正周期为(  )
A.B.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}满足${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$,则a3=(  )
A.$\frac{1}{8}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知cos(π-α)=$\frac{4}{5}$,且α∈($\frac{π}{2}$,π),求下列各式的值.
(1)tan(α-$\frac{π}{4}$);
(2)$\frac{1}{sin(\frac{π}{2}-2α)}$+tan 2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-(2a+1)x+alnx(a>0),求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=lnx-2ax(a∈R)有两个不同的零点,则a的取值范围是$({0,\frac{1}{2e}})$.

查看答案和解析>>

同步练习册答案