精英家教网 > 高中数学 > 题目详情
10.某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:
选考物理、化学、生物的科目数123
人数52520
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

分析 (Ⅰ)计算“所选取的2名学生选考物理、化学、生物科目数量相等”为事件A,利用对立事件的概率公式计算选考物理、化学、生物科目数量不相等的概率值;
(Ⅱ)由题意知X的可能取值,计算对应的概率值,写出X的分布列,计算数学期望值;
(Ⅲ)计算所调查的50名学生中物理、化学、生物选考两科目的学生人数,求出相应的频率,根据n次独立重复实验恰有k次发生的概率,求出对应的概率值.

解答 解:(Ⅰ)记“所选取的2名学生选考物理、化学、生物科目数量相等”为事件A,
则$P(A)=\frac{{C_5^2+C_{25}^2+C_{20}^2}}{{C_{50}^2}}=\frac{20}{49}$,
所以他们选考物理、化学、生物科目数量不相等的概率为
$1-P(A)=\frac{29}{49}$;…(3分)
(Ⅱ)由题意可知X的可能取值分别为0,1,2;
则.$P(X=0)=\frac{{C_5^2+C_{25}^2+C_{20}^2}}{{C_{50}^2}}=\frac{20}{49}$,
$P(X=1)=\frac{{C_5^1C_{25}^1+C_{20}^1C_{25}^1}}{{C_{50}^2}}=\frac{25}{49}$,
$P(X=2)=\frac{{C_5^1C_{20}^1}}{{C_{50}^2}}=\frac{4}{49}$;…(6分)
从而X的分布列为:

X012
p$\frac{20}{49}$$\frac{25}{49}$$\frac{4}{49}$
数学期望为$E(X)=0×\frac{20}{49}+1×\frac{25}{49}+2×\frac{4}{49}=\frac{33}{49}$;…(8分)
(Ⅲ)所调查的50名学生中物理、化学、生物选考两科目的学生有25名,
相应的频率为$P=\frac{25}{50}=\frac{1}{2}$,
由题意知,Y~$B({4,\frac{1}{2}})$;…(10分)
所以事件“Y≥2”的概率为
$P(Y≥2)=C_4^2{({\frac{1}{2}})^2}{({1-\frac{1}{2}})^2}+C_4^3{({\frac{1}{2}})^3}({1-\frac{1}{2}})+C_4^4{({\frac{1}{2}})^4}=\frac{11}{16}$.…(12分)

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-(2a+1)x+alnx(a>0),求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=lnx-2ax(a∈R)有两个不同的零点,则a的取值范围是$({0,\frac{1}{2e}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法中正确的是(  )
A.当a>1时,函数y=ax是增函数,因为2>1,所以函数y=2x是增函数,这种推理是合情推理
B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理
C.命题$P:?{x_0}∈R,{e^{x_0}}<{x_0}$的否定是¬P:?x∈R,ex>x
D.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,左、右焦点为F1,F2,点M为椭圆C上的任意一点,$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的最小值为2.
(I)求椭圆C的标准方程;
(II)已知椭圆C的左、右顶点为A,B,点D(a,t)为第一象限内的点,过F2作以BD为直径的圆的切线交直线AD于点P,求证:点P在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是(  )
A.f(x)=2x2-8x+11B.f(x)=-2x2+8x-1C.f(x)=2x2-4x+3D.f(x)=-2x2+4x+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边落在直线y=-3x上,则cos(π+2α)的值是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$±\frac{3}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M={x|x2+3x+2<0},集合{y|y=x2-2},则M∪N=(  )
A.(-2,-1)B.[-2,-1)C.(-2,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.极坐标为(1,π)的点M的直角坐标为(  )
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

同步练习册答案