精英家教网 > 高中数学 > 题目详情
15.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是(  )
A.f(x)=2x2-8x+11B.f(x)=-2x2+8x-1C.f(x)=2x2-4x+3D.f(x)=-2x2+4x+3

分析 由题意可得对称轴x=1,最大值是5,故可设f(x)=a(x-1)2+5,代入其中一个点的坐标即可求出a的值,问题得以解决

解答 解:二次函数f(x)的图象经过两点(0,3),(2,3),则对称轴x=1,最大值是5,
可设f(x)=a(x-1)2+5,
于是3=a+5,解得a=-2,
故f(x)=-2(x-1)2+5=-2x2+4x+3,
故选:D.

点评 本题考查了二次函数解析的求法和二次函数函数的性质,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知边长为$2\sqrt{2}$的正方形ABCD的四个顶点都在球心为O的球面上,若球O的体积为36π,则直线OA与平面ABCD所成的角的余弦值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某地教育主管部门对所管辖的学校进行年终督导评估,为了解某学校师生对学校教学管理的满意度,分别从教师和不同年级的学生中随机抽取若干师生,进行评分(满分100分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:
满意度评分低于60分60分到79分80分到89分90分及以上
满意度等级不满意基本满意满意非常满意
已知满意度等级为基本满意的有136人.
(I)求表中a的值及不满意的人数;
(II)特从等级为不满意师生中按评分分层抽取6人了解不满意的原因,并从6人中选取2人担任整改监督员,求2人中恰有1人评分在[40,50)的概率;
(III)若师生的满意指数不低于0.8,则该校可获评“教学管理先进单位”,根据你所学的统计知识,判断是否能获奖,并说明理由.(注:满意指数=$\frac{满意程度的平均分}{100}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:
选考物理、化学、生物的科目数123
人数52520
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2kx,g(x)=log3x,若f(-1)=g(9),则实数k的值是(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,$f(x)=\left\{\begin{array}{l}\frac{5}{4}sin({\frac{π}{2}x})({0≤x≤1})\\{({\frac{1}{4}})^x}+1({x>1})\end{array}\right.$若关于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R)有且仅有6个不同实数根,则实数a的取值范围是(0,1)∪{$\frac{5}{4}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线$\left\{\begin{array}{l}x=5+tsin{30°}\\ y=-tcos{30°}\end{array}\right.(t为参数)$的倾斜角是120°

查看答案和解析>>

同步练习册答案