精英家教网 > 高中数学 > 题目详情
4.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,$f(x)=\left\{\begin{array}{l}\frac{5}{4}sin({\frac{π}{2}x})({0≤x≤1})\\{({\frac{1}{4}})^x}+1({x>1})\end{array}\right.$若关于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R)有且仅有6个不同实数根,则实数a的取值范围是(0,1)∪{$\frac{5}{4}$}.

分析 解方程可得f(x)=a或f(x)=$\frac{6}{5}$,作出f(x)的函数图象,根据图象判断a的范围.

解答 解:作出f(x)的函数图象如图所示:

令f(x)=t,则由图象可得:
当t=0时,方程f(x)=t只有1解;
当0<t<1或t=$\frac{5}{4}$时,方程f(x)=t有2解;
当1$<t<\frac{5}{4}$时,方程f(x)=t有4解;
∵5[f(x)]2-(5a+6)f(x)+6a=0,
∴f(x)=$\frac{6}{5}$或f(x)=a,
∵f(x)=$\frac{6}{5}$有4解,
∴f(x)=a有两解,
∴0<a<1或a=$\frac{5}{4}$.
故答案为:(0,1)∪{$\frac{5}{4}$}.

点评 本题考查了方程根的个数与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=-$\frac{{3{x^2}}}{2}$+lnx,g(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx.
(Ⅰ)求函数f(x)的极值.
(Ⅱ)若x0是函数g(x)的极大值点,证明:x0lnx0-ax02>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是(  )
A.f(x)=2x2-8x+11B.f(x)=-2x2+8x-1C.f(x)=2x2-4x+3D.f(x)=-2x2+4x+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(2m,1)$\overrightarrow{b}$=(4-n,2),m>0,n>0,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\frac{1}{m}+\frac{8}{n}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M={x|x2+3x+2<0},集合{y|y=x2-2},则M∪N=(  )
A.(-2,-1)B.[-2,-1)C.(-2,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在直角坐标平面内,如果两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于y轴对称,则称(P,Q)是函数y=f(x)的一对“偶点”(偶点(P,Q)与(Q,P)看作同一对偶点),已知函数f(x)=$\left\{\begin{array}{l}{kx-1,x≥0}\\{2{x}^{2}+4x+3,x<0}\end{array}\right.$有两对“偶点”,则实数k的取值范围是(  )
A.(-∞,-4-4$\sqrt{2}$)B.(-4+4$\sqrt{2}$,+∞)C.(-4-4$\sqrt{2}$,-4+4$\sqrt{2}$)D.(0,-4+4$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某班数学课代表给全班同学出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:我不会证明.乙:丙会证明.丙:丁会证明.丁:我不会证明.根据以上条件,可以判定会证明此题的人是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了确定某类种子的发芽率,从一大批种子中抽出若干粒进行发芽试验,其结果如下表:
种子粒数n25701307002 0153 0004 000
发芽粒数m24601166391 8192 7133 612
(1)计算各批种子的发芽频率;(保留三位小数)
(2)怎样合理地估计这类种子的发芽率?(保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足$x=\sqrt{1-{y^2}}$,则$\frac{y+2}{x}$的取值范围为(  )
A.$[{-\sqrt{3},\sqrt{3}}]$B.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$C.$[{\frac{{\sqrt{3}}}{3},+∞})$D.$[{\sqrt{3},+∞})$

查看答案和解析>>

同步练习册答案