精英家教网 > 高中数学 > 题目详情
3.某地教育主管部门对所管辖的学校进行年终督导评估,为了解某学校师生对学校教学管理的满意度,分别从教师和不同年级的学生中随机抽取若干师生,进行评分(满分100分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:
满意度评分低于60分60分到79分80分到89分90分及以上
满意度等级不满意基本满意满意非常满意
已知满意度等级为基本满意的有136人.
(I)求表中a的值及不满意的人数;
(II)特从等级为不满意师生中按评分分层抽取6人了解不满意的原因,并从6人中选取2人担任整改监督员,求2人中恰有1人评分在[40,50)的概率;
(III)若师生的满意指数不低于0.8,则该校可获评“教学管理先进单位”,根据你所学的统计知识,判断是否能获奖,并说明理由.(注:满意指数=$\frac{满意程度的平均分}{100}$)

分析 (I)由频率和为1列方程求出a的值,根据比例关系求出不满意的人数;
(II)按分层抽样原理抽取6人,利用列举法求出所有的基本事件数,计算对应的概率值;
(III)计算师生的满意指数,即可得出结论.

解答 解:(I)由频率和为1,得
(0.002+0.004+0.014+0.020+a+0.025)×10=1,
解得a=0.035,
设不满意的人数为x,则
(0.002+0.004):(0.014+0.020)=x:136,
解得x=24;
(II)按评分分层抽取6人,应在评分在[40,50)的师生中抽取2人,分别记作A、B,
在评分在[50,60)的师生中抽取4人,分别记为c、d、e、f,
从这6人中选2人的所有基本事件为
AB、Ac、Ad、Ae、Af、Bc、Bd、Be、Bf、cd、ce、cf、de、df、ef共15种,
其中恰有1人评分在[40,50)包含的基本事件为
Ac、Ad、Ae、Af、Bc、Bd、Be、Bf共8种,
记“2人中恰有1人的评分在[40,50)”为事件A,则P(A)=$\frac{8}{15}$;
(III)师生的满意指数为
$\frac{1}{100}$×(45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25)=0.807;
师生的满意指数不低于0.8,可获评“教学管理先进单位”.

点评 本题考查了频率分布直方图与列举法求古典概型的概率问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin2(3x-$\frac{π}{6}$),求函数y=f(x)在x=$\frac{π}{6}$处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=-$\frac{{3{x^2}}}{2}$+lnx,g(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx.
(Ⅰ)求函数f(x)的极值.
(Ⅱ)若x0是函数g(x)的极大值点,证明:x0lnx0-ax02>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线l:x+2y=0与圆C:(x-a)2+(y-b)2=10相切,且圆心C在直线l的上方,则ab的最大值为$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法中正确的是(  )
A.当a>1时,函数y=ax是增函数,因为2>1,所以函数y=2x是增函数,这种推理是合情推理
B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理
C.命题$P:?{x_0}∈R,{e^{x_0}}<{x_0}$的否定是¬P:?x∈R,ex>x
D.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,菱ABCD与四边形BDEF相交于BD,∠ABC=120°,BF⊥平面ABCD,DE∥BF,BF=2DE,AF⊥FC,M为CF的中点,AC∩BD=G.
(I)求证:GM∥平面CDE;
(II)求直线AM与平面ACE成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是(  )
A.f(x)=2x2-8x+11B.f(x)=-2x2+8x-1C.f(x)=2x2-4x+3D.f(x)=-2x2+4x+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(2m,1)$\overrightarrow{b}$=(4-n,2),m>0,n>0,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\frac{1}{m}+\frac{8}{n}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了确定某类种子的发芽率,从一大批种子中抽出若干粒进行发芽试验,其结果如下表:
种子粒数n25701307002 0153 0004 000
发芽粒数m24601166391 8192 7133 612
(1)计算各批种子的发芽频率;(保留三位小数)
(2)怎样合理地估计这类种子的发芽率?(保留两位小数)

查看答案和解析>>

同步练习册答案