精英家教网 > 高中数学 > 题目详情
5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,左、右焦点为F1,F2,点M为椭圆C上的任意一点,$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的最小值为2.
(I)求椭圆C的标准方程;
(II)已知椭圆C的左、右顶点为A,B,点D(a,t)为第一象限内的点,过F2作以BD为直径的圆的切线交直线AD于点P,求证:点P在椭圆C上.

分析 (I)根据向量的坐标求得$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=x02-c2+y02,由y02=b2-$\frac{{b}^{2}}{{a}^{2}}$x02,代入,由x0=0,则$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$取最小值,最小值为b2-c2,根据椭圆的离心率公式,联立即可求得a和b的值,求得椭圆方程;
(II)设圆心坐标,求得圆的方程,利用点到直线的距离公式,即可求得k,列方程组,求得P点坐标,即可代入椭圆方程成立,则点P在椭圆C上.

解答 解:(I)设M(x0,y0),F1(-c,0),F2(-c,0),
则$\overrightarrow{M{F}_{1}}$=(-c-x0,y0),$\overrightarrow{M{F}_{2}}$=(c-x0,y0),
$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=(-c-x0,y0)(c-x0,y0)=x02-c2+y02
由∵$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{{b}^{2}}=1$,y02=b2-$\frac{{b}^{2}}{{a}^{2}}$x02
$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=(1-$\frac{{b}^{2}}{{a}^{2}}$)x02+b2-c2
由-a≤x0≤a,则x0=0,则$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$取最小值,最小值为b2-c2
∴b2-c2=2,
由$\frac{c}{a}$=$\frac{1}{2}$,则$\frac{{c}^{2}}{{a}^{2}}$=$\frac{1}{4}$,
∴a2=4,b2=3,
则椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(II)证明:由(I)可知F2(1,0),设以BD为直径的圆E,其圆心E(2,$\frac{t}{2}$),D(2,t),B(2,0),
则圆E(x-2)2+(y-$\frac{t}{2}$)2=$\frac{{t}^{2}}{4}$,
直线AD的方程为y=$\frac{t}{4}$(x+2),
设过点F2与圆E相切的直线方程设为x=ky+1,
则$\frac{丨2-\frac{kt}{2}-1丨}{\sqrt{1+{k}^{2}}}$=丨$\frac{t}{2}$丨,则k=$\frac{4-{t}^{2}}{4t}$,
解方程组$\left\{\begin{array}{l}{y=\frac{t}{4}(x+2)}\\{x=\frac{4-{t}^{2}}{4t}y+1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{24-2{t}^{2}}{12+{t}^{2}}}\\{y=\frac{12t}{12+{t}^{2}}}\end{array}\right.$,
将($\frac{24-2{t}^{2}}{12+{t}^{2}}$,$\frac{12t}{12+{t}^{2}}$)代入椭圆方程成立,即$\frac{(\frac{24-2{t}^{2}}{12+{t}^{2}})^{2}}{4}$+$\frac{(\frac{12t}{12+{t}^{2}})^{2}}{3}$=1,
∴点P在椭圆C上.

点评 本题考查椭圆的标准方程及简单几何性质,圆的标准方程,直线与椭圆的位置关系,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函数F(x)=g(x+1)-f(x)有极值为0,求a的值;
(2)若函数G(x)=f[cos(1-x)]+g(x-1)在区间(1,2)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为3的正三角形,SC是球O的直径,且SC=4,则此三棱锥的体积V=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,点E是菱形ABCD所在平面外一点,EA⊥平面ABCD,EA∥FB∥GD,∠ABC=60°,EA=AB=2BF=2GD.
(I)求证:平面EAC⊥平面ECG;
(II)求二面角B-EC-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=(${\sqrt{3}$cosx-sinx)(cosx+$\sqrt{3}$sinx),则下面结论中错误的是(  )
A.函数f(x)的最小正周期为π
B.函数f(x)的图象关于直线$x=\frac{π}{12}$对称
C.函数f(x)的图象可由g(x)=2sin2x的图象向右平移$\frac{π}{6}$个单位得到
D.函数f(x)在区间$[{-\frac{π}{4},0}]$上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:
选考物理、化学、生物的科目数123
人数52520
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=cos2x-4cosx+1的最小值是(  )
A.-3B.-2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.种子发芽率与昼夜温差有关.某研究性学习小组对此进行研究,他们分别记录了3月12日至3月16日的昼夜温差与每天100颗某种种子浸泡后的发芽数,如表:
日    期3月12日3月13日3月14日3月15日3月16日
昼夜温差(°C)101113128
发芽数(颗)2325302616
(I)从3月12日至3月16日中任选2天,记发芽的种子数分别为c,d,求事件“c,d均不小于25”的概率;
(II)请根据3月13日至3月15日的三组数据,求出y关于x的线性回归方程$\widehaty=\widehata+\widehatbx$;
(III)若由线性回归方程得到的估计数据与实际数据误差均不超过2颗,则认为回归方程是可靠的,试用3月12日与16日的两组数据检验,(II)中的回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,最小正周期为π且一条对称轴为$x=\frac{π}{8}$的函数是(  )
A.y=sin2x+cos2xB.y=sinx+cosxC.$y=cos(2x+\frac{π}{2})$D.$y=sin(2x+\frac{π}{2})$

查看答案和解析>>

同步练习册答案