精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=(${\sqrt{3}$cosx-sinx)(cosx+$\sqrt{3}$sinx),则下面结论中错误的是(  )
A.函数f(x)的最小正周期为π
B.函数f(x)的图象关于直线$x=\frac{π}{12}$对称
C.函数f(x)的图象可由g(x)=2sin2x的图象向右平移$\frac{π}{6}$个单位得到
D.函数f(x)在区间$[{-\frac{π}{4},0}]$上是增函数

分析 将f(x)化简,结合三角函数的性质求解即可.

解答 解:函数$f(x)=({\sqrt{3}cosx-sinx})({cosx+\sqrt{3}sinx})$,
化简可得:f(x)=$\sqrt{3}$cos2x+3sinxcosx-sinxcosx-$\sqrt{3}$sin2x=$\sqrt{3}$cos2x+sin2x=2sin(2x+$\frac{π}{3}$)
最小正周期T=$\frac{2π}{2}=π$.∴A对.
令x=$\frac{π}{12}$,即f($\frac{π}{12}$)=2sin($\frac{π}{2}$)=2,∴关于直线$x=\frac{π}{12}$对称,B对.
函数g(x)=2sin2x的图象向右平移$\frac{π}{6}$个单位,可得:2sin2(x-$\frac{π}{6}$)=2sin(2x-$\frac{π}{3}$)≠f(x),∴C不对.
令$-\frac{π}{2}≤$2x+$\frac{π}{3}$≤$\frac{π}{2}$上单调递增,可得:$-\frac{5π}{12}≤x≤\frac{π}{12}$,∴函数f(x)在区间$[{-\frac{π}{4},0}]$上是增函数,∴D对.
故选:C.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知某四棱锥的三视图(单位:cm)如图所示,则该几何体的体积是$\frac{8\sqrt{3}}{3}$,其全面积是16+$\sqrt{3}$+$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC内角A,B,C的对边分别是a,b,c,若b=c,a2=2b2(1+sinA),则A=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinωx+$\sqrt{3}cosωx({ω>0})$,当f(x1)=f(x2)=2时,|x1-x2|的最小值为2,给出下列结论,其中所有正确结论的个数为(  )
①f(0)=$\frac{π}{3}$;  
②当x∈(0,1)时,函数f(x)的最大值为2;  
③函数$f({x+\frac{1}{6}})$的图象关于y轴对称;  
④函数f(x)在(-1,0)上是增函数.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex+ax2-bx-1(a,b∈R,e为自然对数的底数).
(I)设f(x)的导函数为g(x),求g(x)在区间[0,l]上的最小值;
(II)若f(1)=0,且函数f(x)在区间(0,1)内有零点,证明:-1<a<2-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,左、右焦点为F1,F2,点M为椭圆C上的任意一点,$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的最小值为2.
(I)求椭圆C的标准方程;
(II)已知椭圆C的左、右顶点为A,B,点D(a,t)为第一象限内的点,过F2作以BD为直径的圆的切线交直线AD于点P,求证:点P在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b∈R,且a>b,求证:2a+$\frac{1}{{a}^{2}-2ab+{b}^{2}}$≥2b+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于实数m,n,定义一种运算:$m*n=\left\{{\begin{array}{l}{m,m≥n}\\{n,m<n}\end{array}}\right.$,已知函数f(x)=a*ax,其中0<a<1,若f(t-1)>f(4t),则实数t的取值范围是(-$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C1的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而以双曲线C2的左、右顶点分别是椭圆C1的左、右焦点.
(1)求双曲线C2的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C2相交于不同的两点E、F,若△OEF的面积为2$\sqrt{2}$,求直线l的方程.

查看答案和解析>>

同步练习册答案