精英家教网 > 高中数学 > 题目详情
已知曲线C上动点P(x,y)到定点F1
3
,0)与定直线l1:x=
4
3
3
的距离之比为常数
3
2

(1)求曲线C的轨迹方程;
(2)以曲线c的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求
TM
TN
的最小值,并求此时圆T的方程.
分析:(1)利用条件,建立方程,化简,即可求曲线c的轨迹方程;
(2)用坐标表示出向量的数量积,再用配方法求最值,求出M的坐标,代入圆的方程,即可求得结论.
解答:解:(1)因为曲线C上动点P(x,y)到定点F1
3
,0)与定直线l1:x=
4
3
3
的距离之比为常数
3
2

所以
(x-3)2+y2
|x-
4
3
3
|
=
3
2

所以椭圆的标准方程为
x2
4
+y2=1

(2)点M与点N关于x轴对称,设M(x1,y1),N(x2,y2),不妨设y1>0.
由于点M在椭圆C上,所以y12=1-
x12
4

由已知T(-2,0),则
TM
=(x1+2,y1),
TN
=(x1+2,-y1),
TM
TN
=(x1+2,y1)•(x1+2,-y1)=
5
4
(x1+
8
5
2-
1
5

由于-2<x1<2,故当x1=-
8
5
时,
TM
TN
取得最小值为-
1
5

此时,y1=
3
5
,故M(-
8
5
3
5
),
又点M在圆T上,代入圆的方程得到r2=
13
25

故圆T的方程为:(x+2)2+y2=
13
25
点评:本题考查椭圆的标准方程,考查向量的数量积公式,考查配方法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C上的动点M到y轴的距离比到点F(1,0)的距离小1,
(I)求曲线C的方程;
(II)过F作弦PQ、RS,设PQ、RS的中点分别为A、B,若
PQ
RS
=0
,求|
AB
|
最小时,弦PQ、RS所在直线的方程;
(III)是否存在一定点T,使得
AF
TB
-
FT
?若存在,求出P的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)已知曲线C上动点P(x,y)到定点F1
3
,0)与定直线l1:x=
4
3
3
的距离之比为常数
3
2

(1)求曲线C的轨迹方程;
(2)若过点Q(1,
1
2
)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程;
(3)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求
TM
TN
的最小值,并求此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学江苏省无锡市青阳高级中学高三(上)月考数学试卷(一)(解析版) 题型:解答题

已知曲线C上动点P(x,y)到定点F1,0)与定直线l1:x=的距离之比为常数
(1)求曲线C的轨迹方程;
(2)以曲线c的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求的最小值,并求此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源:2012年上海市崇明县高考数学二模试卷(理科)(解析版) 题型:解答题

已知曲线C上动点P(x,y)到定点F1,0)与定直线l1:x=的距离之比为常数
(1)求曲线C的轨迹方程;
(2)若过点Q(1,)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程;
(3)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求的最小值,并求此时圆T的方程.

查看答案和解析>>

同步练习册答案